# Focus Directions Make Your Language Models Pay More Attention to Relevant Contexts



Youxiang Zhu, Ruochen Li, Danqing Wang, Daniel Haehn, Xiaohui Liang

### 1. LLMs are prone to distracted by irrelevant context. Why?

#### 1.1 Identify contextual heads

**Contextual Scoring:** A metric that quantifies the degree of attention allocated to specific segments of the input (e.g., relevant contexts) during response generation.

**Contextual Heads:** The top-k attention heads ranked by contextual score (to relevant contexts)

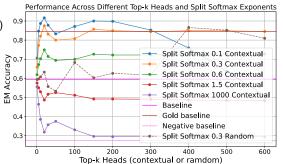
### 1.2 Properties of contextual heads

Contextual heads are sparse, located in middle and late layers

Correct

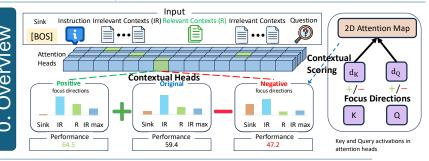
More

Wrong


Less

|           | contexts |  |  |  |  |  |  |  |     |    |     |     |     |      |      |     |  |  |  |  |           |   |
|-----------|----------|--|--|--|--|--|--|--|-----|----|-----|-----|-----|------|------|-----|--|--|--|--|-----------|---|
|           |          |  |  |  |  |  |  |  | Lla | am | a-3 | .2- | 3B- | -Ins | stru | ıct |  |  |  |  |           | 3 |
| Layer lds | 6 4 2 0  |  |  |  |  |  |  |  |     |    |     |     |     |      |      |     |  |  |  |  | - 0.5-1   |   |
|           | 12 10 8  |  |  |  |  |  |  |  |     |    |     |     |     |      |      |     |  |  |  |  | - 0.2-0.5 | 2 |
|           | 87       |  |  |  |  |  |  |  |     |    |     |     |     |      |      |     |  |  |  |  | - 0.1-0.2 | Ć |
|           | 24 22    |  |  |  |  |  |  |  |     |    |     |     |     |      |      |     |  |  |  |  | - 0-0,1   | C |

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23


#### 1.3 Modifying attention on contextual heads

- Method: Split softmax (<1 increase attention, > 1 decrease)
- Increase attention to relevant contexts: performance ↑
- **Decrease** attention to relevant contexts: performance ↓
- · Non contextual heads have minimum such effects



### Contextual heads controls the overall attention of LLMs

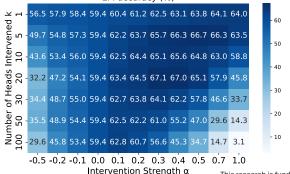
Modifying attention on contextual heads could make performance better than gold baseline (relevant context only), or close to the negative baseline (irrelevant contexts only)



## 2. Focus directions move attention from sink to relevant contexts

**Motivation:** Can contextual heads figure out the relevant contexts by themselves?

**Locating focus directions**: simply train  $d_K$  and  $d_Q$  to maximize the contextual score for the relevant contexts.


#### Main findings:

**LLM Response** 

Focus to relevant

| Focus direction | Relevant contexts | Sink           |
|-----------------|-------------------|----------------|
| Positive        | More attention    | Less attention |
| Negative        | Less attention    | More attention |

 Focus directions only help mitigate distraction on contextual heads. EM accuracy (%)



# 3. Focus directions mitigate poor task alignment

Benchmark: HELMET (5 categories, 16 tasks used)

#### Main findings:

- Focus directions help for the long context tasks that LLM could do well in the short context.
- Most of the tasks could be improved by either positive or negative focus direction.
- Focus direction improves the overall performance of poorly aligned LLMs. (e.g., base vs. instruct, inconsistent sink score for the same context length)

| Model     | Recall             | RAG   | Re-ranking | ICL   | Long QA | Overall Average | Model                      | Recall | RAG   | Re-ranking | ICL   | Long QA | Overall Average |  |
|-----------|--------------------|-------|------------|-------|---------|-----------------|----------------------------|--------|-------|------------|-------|---------|-----------------|--|
| Llama-3.2 |                    |       |            |       |         |                 | Llama-3.2                  | 2-3B   |       |            |       |         |                 |  |
| 200.2     | 66.00              | 54.96 | 29.22      | 82.20 |         | 58.10           | 200.2                      | 55.50  | 50.38 | 6.83       | 85.20 |         | 49.48           |  |
| 100.2     | 73.81              | 56.58 | 26.73      | 83.00 |         | 60.03           | 100.2                      | 64.56  | 53.96 | 6.24       | 86.20 |         | 52.74           |  |
| 20.0.2    | 81.50              | 58.75 | 25.37      | 80.20 |         | 61.46           | 20.0.2                     | 66.31  | 56.46 | 7.08       | 85.40 |         | 53.81           |  |
| 10.0.2    | 82.00              | 58.54 | 26.16      | 80.60 |         | 61.83           | 10.0.2                     | 65.69  | 55.83 | 9.27       | 85.40 |         | 54.05           |  |
| baseline  | 78.88              | 58.83 | 26.10      | 82.20 |         | 61.50           | baseline                   | 65.50  | 54.83 | 7.29       | 86.20 |         | 53.46           |  |
| Llama-3.2 | 2-3B-Inst          | ruct  |            |       |         |                 | Llama-3.2                  |        | ruct  |            |       |         |                 |  |
| 200.2     | 73.00              | 58.04 | 13.68      | 78.80 | 27.32   | 50.17           | 20,-0.2                    | 56.38  | 56.75 | 3.77       | 83.80 | 28.64   | 45.87           |  |
| 100.2     | 79.12              | 60.21 | 13.32      | 79.40 | 26.66   | 51.74           | 100.2                      | 61.06  | 58.33 | 2.44       | 85.00 | 30.38   | 47.44           |  |
| 20.0.2    | 83.50              | 60.25 | 20.58      | 80.60 | 26.09   | 54.20           | 20.0.2                     | 65.81  | 59.21 | 2.72       | 83.40 | 28.23   | 47.87           |  |
| 10.0.2    | 83.69              | 62.08 | 20.77      | 80.40 | 25.94   | 54.58           | 10.0.2                     | 64.25  | 59.79 | 3.10       | 84.20 | 26.80   | 47.63           |  |
| baseline  | 84.38              | 63.00 | 17.13      | 80.20 | 26.78   | 54.30           | baseline                   | 64.12  | 59.96 | 3.77       | 85.00 | 31.13   | 48.80           |  |
| Owen2.5   | -7B                |       |            |       |         |                 | Owen2.5                    | -7B    |       |            |       |         |                 |  |
| 200.2     | 94.56              | 53.50 | 22.86      | 77.60 | -       | 62.13           | 200.2                      | 42.06  | 41.96 | 1.30       | 77.40 | -       | 40.68           |  |
| 100.2     | 95.31              | 54.58 | 24.84      | 78.40 | -       | 63.28           | 100.2                      | 45.00  | 43.42 | 2.64       | 77.40 | -       | 42.11           |  |
| 20.0.2    | 95.88              | 54.04 | 23.25      | 79.40 | -       | 63.14           | 20.0.2                     | 46.56  | 43.08 | 1.19       | 77.60 | -       | 42.11           |  |
| 10.0.2    | 95.50              | 54.08 | 23.11      | 80.00 | -       | 63.17           | 10.0.2                     | 46.56  | 43.62 | 1.07       | 78.80 | -       | 42.51           |  |
| baseline  | 96.00              | 54.21 | 23.15      | 79.60 | -       | 63.24           | baseline                   | 45.19  | 44.12 | 1.88       | 78.00 | -       | 42.30           |  |
| Owen2.5   | wen2,5-7B-Instruct |       |            |       |         |                 | Owen2.5-7B-Instruct        |        |       |            |       |         |                 |  |
| 200.2     | 94.38              | 55.87 | 35.88      | 78.40 | 33.73   | 59.65           | 200.2                      | 46.31  | 43.96 | 11.92      | 78.80 | 22.07   | 40.61           |  |
| 100.2     | 95,38              | 56.54 | 35.78      | 78.40 | 33,63   | 59.94           | 100.2                      | 46.38  | 44.42 |            | 78.60 | 21.66   | 40.65           |  |
| 20.0.2    | 95.44              | 58.50 | 36.75      | 78.40 | 33,45   | 60.51           | 20.0.2                     | 51.38  | 46.88 | 10.28      | 78.20 | 22.95   | 41.94           |  |
| 10.0.2    | 95.44              | 58.79 | 35.85      | 78.20 | 32.61   | 60.18           | 10.0.2                     | 49.25  | 47.79 | 11.66      | 78.20 | 23.94   | 42.17           |  |
| baseline  | 95.25              | 57.71 | 36.56      | 77.40 | 31.92   | 59.77           | baseline                   | 47.88  | 46.54 | 11.88      | 78.60 | 22.43   | 41.46           |  |
|           |                    |       |            |       |         |                 | Ministral-8B-Instruct-2410 |        |       |            |       |         |                 |  |
| 200.2     | 94.62              | 61.79 | 31.31      | 77.20 | 33.59   | 59.70           | 200.2                      | 30.56  | 46.17 | 0.00       | 80.60 | 21.41   | 35.75           |  |
| 100.2     | 94.56              | 62.17 | 29.74      | 78.80 | 33.17   | 59.69           | 100.2                      | 30.06  | 46.04 | 0.00       | 80.00 | 20.62   | 35.34           |  |
| 20.0.2    | 93.81              | 63.46 | 38.86      | 79.40 | 29.00   | 60.91           | 20.0.2                     | 30.88  | 47.12 | 0.00       | 81.80 | 19.98   | 35.96           |  |
| 10.0.2    | 93.81              | 63.87 | 36.69      | 79.60 | 28.74   | 60.54           | 10.0.2                     | 31.19  | 46.79 | 0.00       | 82.80 | 19.49   | 36.05           |  |
| baseline  | 94.75              | 63.58 | 33.68      | 79.00 | 31.56   | 60.51           | baseline                   | 30.62  | 47.17 | 0.00       | 81.40 | 21.40   | 36.12           |  |

Table 2: Results of HELMET benchmark under 32k (left) and 64k (right) context. Green indicates better than the baseline; red indicates worse than the baseline.