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Following the theory of error propagation, we developed analytical functions to illustrate and evaluate
the uncertainties of inherent optical properties (IOPs) derived by the quasi-analytical algorithm (QAA).
In particular, we evaluated the effects of uncertainties of these optical parameters on the inverted IOPs:
the absorption coefficient at the reference wavelength, the extrapolation of particle backscattering coef-
ficient, and the spectral ratios of absorption coefficients of phytoplankton and detritus/gelbstoff, respec-
tively. With a systematically simulated data set (46,200 points), we found that the relative uncertainty of
QAA-derived total absorption coefficients in the blue-green wavelengths is generally within �10% for
oceanic waters. The results of this study not only establish theoretical bases to evaluate and understand
the effects of the various variables on IOPs derived from remote-sensing reflectance, but also lay the
groundwork to analytically estimate uncertainties of these IOPs for each pixel. These are required
and important steps for the generation of quality maps of IOP products derived from satellite ocean color
remote sensing. © 2010 Optical Society of America

OCIS codes: 010.4450, 280.4991.

1. Introduction

To describe, understand, and forecast the interac-
tions and changes associated with environments and
climate, it is critical to have reliable long-term obser-
vations of geophysical properties for the atmosphere
as well as for the land and oceans. For such a daunt-
ing requirement, measurements by satellite remote
sensors are indispensable. To meet this requirement,
systematic observations of the biogeochemical prop-
erties of global oceans through the measurement of
ocean color (ocean color radiometry—OCR) from

space have become an important component of the
Earth Observing System [1], and various ocean color
missions, such as the CZCS (Coastal Zone Color
Scanner, 1978–1986), SeaWiFS (Sea-viewing Wide
Field-of-view Sensor, 1997–present), MODIS (Moder-
ate Resolution Imaging Spectroradiometer, 1999–
present), and MERIS (Medium Resolution Imaging
Spectrometer, 2002–present) instruments that have
been launched since the late 1970s [2].

The derived products from OCR generally include
inherent optical properties (IOPs; e.g., marine ab-
sorption and scattering coefficients), concentrations
of chlorophyll-a and suspended matters, and water
clarity [3]. These products, however, inherently con-
tain some degree of uncertainty because of imperfect
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sensor engineering and retrieval algorithms [4–7].
Conventionally, such uncertainties, sometimes called
“errors,” are evaluated statistically by comparing re-
trieved values from remote sensing with those from
water samples of concurrent measurements, and an
averaged uncertainty for the entire data set [8], or
subgroups [9], is usually obtained. This quantity pro-
vides a general picture about the consistency be-
tween retrieved and measured properties. By the
nature of the evaluation method, however, this quan-
tity, especially the averaged “error” derived from a
data set covering a wide dynamic range, does not re-
present the uncertainty for a particular pixel in sa-
tellite imagery. Also note that this quantity does not
necessarily represent algorithm or satellite retrieval
error, as errors associated with various in situ or lab
measurements are not removed in the comparison.
At present, there is no quantitative measure able

to describe the quality (or uncertainty) of satellite
products pixelwise, although eight quality levels of
chlorophyll-a concentration could be obtained based
on the class-based approach recently developed by
Moore et al. [9]. Consequently, this limits the uncer-
tainty evaluation of next level products, such as pri-
mary production [10,11] or water quality [12–14] and
prevents a full account of errors or uncertainties in
closure analyses [15] or trend evaluations [16].
Note that satellite ocean color remote sensing is a

complex system with many variables and steps in-
volved before bio-optical products are finally gener-
ated. Major variables/steps include, in a sequential
order, sensor calibration [17], atmospheric correction
[18], and inversion of optical and biogeochemical
properties [8,19] from the spectrum of water-leaving
radiance (or remote sensing reflectance). Each vari-
able/step has its own sources and levels of uncertain-
ties; thus it is required to understand the sources of
uncertainties and quantify the quality of the pro-
ducts of each step [6].
For the bio-optical inversion, Wang et al. [20] pro-

posed a scheme to obtain ensembles of solutions for
each spectral remote sensing reflectance spectrum
(rrs, in units Sr−1, representing subsurface re-
mote-sensing reflectance, which can be derived from
above-surface remote-sensing reflectance, Rrs, after
correcting the air–sea surface effects [21]) via a lin-
ear matrix inversion method [22]. Depending on the
setup of the ranges and steps of the spectral shapes of
the major components, such an approach could result
in more than 1000 combinations of inversions to be
carried out for each rrs spectrum [20]. This computa-
tional requirement makes it rather difficult to be in-
corporated into operational processing where large
quantities of satellite images have to be processed.
The quasi-analytical algorithm (QAA) [13,23], on

the other hand, derives IOPs from rrs in a stepwise
fashion with every variable also explicitly described.
This characteristic makes it easy to propagate and
evaluate the effects of uncertainties of each variable
based on the theory of error propagation [24]. To high-
light this feature and to evaluate the uncertainties

introduced by QAA, we developed analytical expres-
sions to describe the uncertainties of optical variables
and their propagations in the QAA process (see Fig. 1
for a schematic flowchart of the steps and the vari-
ables whose uncertainties are evaluated and propa-
gated). In particular we evaluated the uncertainty
and propagation of the following: the absorption coef-
ficient at the reference wavelength, the extrapolation
of particle backscattering coefficient from one wave-
length to another (represented by apower coefficient),
and the spectral ratios of absorption coefficients of
phytoplankton and detritus/gelbstoff, respectively.
The results of this study provide important compo-
nents that are required for the generation of quality
maps of IOPs products.

2. Overview of Quasi-Analytical Algorithm and
Uncertainty Propagation

A. Quasi-Analytical Algorithm Overview

QAA is an inversion algorithm [23] that derives
water’s IOPs from a spectral rrs, as IOPs provide the
key connection between in-water constituents and
spectral radiance from a water body [25,26]. The fol-
lowing equations provide a concise summary of QAA
steps and data flow.

The quantity u is defined as

uðλÞ ¼ bbðλÞ
aðλÞ þ bbðλÞ

: ð1Þ

Fig. 1. Schematic chart to show variables and steps (S1–S7) in-
volved in the QAA procedure, redrawn from Lee et al. [23]. Vari-
ables with uncertainties (U1–U4) discussed in this study are
highlighted with gray, while all others assumed error free.
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Here bb and a represent the total backscattering
and absorption coefficients (units of m−1), respec-
tively. The symbol λ represents wavelength (units of
nm). In the current QAA procedure and other semi-
analytical algorithms [22,27,28], u can be derived
from measured rrs through a model [29,30]:

rrsðλÞ ¼ ðg0 þ g1 uðλÞÞuðλÞ: ð2Þ
Here g0 and g1 are model constants, and their va-

lues vary with Sun-sensor angular geometry [31],
although they are considered wavelength and water-
property independent. Equation (2) is an approxima-
tion [32] from the radiative transfer equation, so the
expression is not error free. However, because the er-
ror in Eq. (2) is significantly less than 10% [29] and
this study focuses on the uncertainties specifically
introduced by the QAA procedure, the minor uncer-
tainty introduced by Eq. (2) is omitted here.
For convenience in algebraic derivations, quanti-

ties A and B are defined, respectively, as

AðλÞ ¼ 1 − uðλÞ
uðλÞ ; ð3Þ

BðλÞ ¼ uðλÞ
1 − uðλÞ : ð4Þ

When the absorption coefficient at a reference
wavelength (λ0 ¼ 555, 551, or 560nm for SeaWiFS,
MODIS, and MERIS, respectively), aðλ0Þ, is estimat-
ed through [13] (also see http://www.ioccg.org/groups/
Software_OCA/QAA_v5.pdf for recent updates)

χ ¼ log
�

rrsð443Þ þ rrsð490Þ
rrsðλ0Þ þ 5 rrsð667Þ

rrsð490Þ rrsð667Þ

�
;

aðλ0Þ ¼ awðλ0Þ þ 10−1:146−1:366χ−0:469χ
2
;

ð5Þ

where awðλ0Þ is the contribution of pure water [33].
Then bbpðλ0Þ is calculated by

bbpðλ0Þ ¼ Bðλ0Þ aðλ0Þ − bbwðλ0Þ: ð6Þ

To calculate aðλÞ requires extrapolation of bbp at λ0
to λ. The relationship between bbp at two wave-
lengths can be generally expressed as

bbpðλÞ ¼ bbpðλ0Þ ρðλ; λ0Þ: ð7aÞ

For easy extrapolation and following tradition
[25,34], ρðλ; λ0Þ in QAA is modeled as

ρðλ; λ0Þ ¼
�λ0
λ

�η
; ð7bÞ

with η estimated from

η ¼ 2:0

�
1 − 1:2 exp

�
−0:9

rrsð440Þ
rrsð550Þ

��
: ð8Þ

The absorption coefficient at λ is then calculated:

aðλÞ ¼ AðλÞðbbpðλÞ þ bbwðλÞÞ: ð9Þ

When aðλ1Þ and aðλ2Þ are known, adgðλ2Þ and aphðλ2Þ
are further calculated:

adgðλ2Þ ¼
½aðλ1Þ − ζ aðλ2Þ� − ½awðλ1Þ − ζ awðλ2Þ�

ξ − ζ ;

aphðλ2Þ ¼
½ξaðλ2Þ − aðλ1Þ� − ½ξawðλ2Þ − awðλ1Þ�

ξ − ζ :

ð10Þ

Here the parameters ζ and ξ represent the ratio of
aphðλ1Þ=aphðλ2Þ and adgðλ1Þ=adgðλ2Þ, respectively. In
QAA, the value of ζ is estimated empirically from
rrsðλÞ, and ξ is estimated with exp½Sðλ2–λ1Þ�. Here
S (units of nm−1) is the spectral slope of the combined
absorption coefficient of gelbstoff and detritus [28].
The wavelengths λ1 and λ2 are normally selected as
412nm and 443nm, respectively, to reflect spectral
configurations of satellite sensors (e.g., SeaWiFS/
MODIS). The subscripts w, ph, dg, and p stand for
water molecules (including salt effects), phytoplank-
ton, detritus/gelbstoff, and particles, respectively.

B. Uncertainties and Their Propagations

In general, for a variable z that is a function of vari-
ous independent variables xi,

z ¼ f ðxi; i∶1 ⇒ NÞ; ð11Þ

the uncertainty of z, Δz, can be expressed as [24,35]

Δz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

½ΔzðΔxiÞ�2
vuut : ð12aÞ

HereΔzðΔxiÞ is the uncertainty in z that results from
uncertainty of xi,Δxi. This equation is also commonly
expressed as [24]

Δz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

�
∂z
∂xi

Δxi

�
2

vuut ; ð12bÞ

with ∂z=∂xi a partial derivative of z over xi.
In the QAA process, the variables rrsðλÞ, aðλ0Þ,

ρðλ; λ0Þ (or η), ζ, and ξ are involved at various steps
(see Fig. 1). Although their values may be estimated
from the same rrsðλÞ, e.g., aðλ0Þ or η, there are no ob-
servations indicating that their uncertainties covary;
therefore the uncertainties of these variables are
considered independent of each other. Also, it is
necessary to keep in mind that an IOP product is
not necessarily affected by all of these variables.
For instance, the value of ρðλ; λ0Þ (or η) has no effect
on the estimation of bbpðλ0Þ, and the values of ζ and ξ
have no effect on the estimation of aðλÞ. We recognize
that rrs from satellite or any platform is not error free
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(e.g., Antoine et al. [7], Hu et al. [36], and Zibordi et al.
[7,37]), but this measurement-introduced uncer-
tainty is omitted in this study as it is not yet clear
about the pixel-specific uncertainty of a measured
rrs. The following is thus focused on how the un-
certainties of aðλ0Þ, η, ζ, and ξ affect the quality of
derived IOPs.

a. Uncertainty in estimated bbpðλÞ: When
Δaðλ0Þ is known, the uncertainty of bbpðλ0Þ, based
on Eqs. (12a) and (6), is

bbpðλ0Þ ¼ Bðλ0ÞΔaðλ0Þ; ð13aÞ

assuming B is error free. Equation (13a) indicates
that the uncertainty of bbpðλ0Þ is proportional to that
of aðλ0Þ.
The uncertainty of bbp at other wavelengths, how-

ever, will be different because it depends on the
accuracy of ρðλ; λ0Þ; see Eq. (7a). When ρðλ; λ0Þ is
described by Eq. (7b), the uncertainty of bbpðλÞ then
depends on the accuracy of η:

ΔbbpðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

Bðλ0Þ
�λ0
λ

�η
Δaðλ0Þ

�
2
þ
�
½Bðλ0Þ aðλ0Þ − bbwðλ0Þ�

�λ0
λ

�η
ln
�λ0
λ

�
Δη

�
2

s
: ð13bÞ

In Eq. (13b), the first term on the right-hand side is
for Δη ¼ 0, while the second term is for Δaðλ0Þ ¼ 0.
Note that Eq. (7b) is not error free in describing the

spectral variation of bbpðλÞ, and this imperfection is
lumped into the uncertainty of variable η. For two
different wavelengths, e.g., 411 and 443nm, it was
found that ρð411; 555Þ is highly correlated with
ρð443; 555Þ [R2 ¼ 0:93, NOMAD (the NASA bio-
Optical Marine Algorithm Dataset [38]), not shown
here]. It is thus justified to use the combination of
Eq. (7b) and Δη for the estimation of Δρðλ; λ0Þ and
then ΔbbpðλÞ.
b. Uncertainty in estimated aðλÞ: The uncertain-

ty of aðλÞ resulting from Δaðλ0Þ and Δη is derived by
combining Eqs. (9) and (13b), omitting uncertainties
associated with quantities A and B, which are calcu-
lated from measured rrs through Eqs. (1) and (2):

ΔaðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
AðλÞBðλ0Þ

�λ0
λ

�η
Δaðλ0Þ

�
2
þ
�
AðλÞ½Bðλ0Þaðλ0Þ − bbwðλ0Þ�

�λ0
λ

�η
ln
�λ0
λ

�
Δη

�
2

s
: ð14Þ

Equations (13a), (13b), and (14) indicate that, in
the QAA system, when both aðλ0Þ and η are error
free [both Δaðλ0Þ and Δη are zero], the derived back-
scattering coefficient and absorption at other wave-
lengths will also be error free. This suggests that,
in addition to improving the qualities of rrs measure-
ments and rrs models, we should focus on minimizing
Δaðλ0Þ and Δη in future efforts to improve QAA
performance.

c. Uncertainties in estimated aphðλ2Þ and adgðλ2Þ:
Subsequently, we can analytically evaluate the
propagated uncertainty in QAA-derived aphðλ2Þ and
adgðλ2Þ, respectively. Since awðλÞ are considered con-
stants, there are four properties [see Eq. (10)] contri-
buting to the uncertainties of QAA-derived aphðλ2Þ
and adgðλ2Þ: aðλ1Þ, aðλ2Þ, ζ, and ξ. The uncertainty
contributions of ζ and ξ are treated independent of
each other, as field observations have not demon-
strated that ζ covaries with ξ in natural aquatic
environments.

The uncertainty contributions of aðλ1Þ and aðλ2Þ
to Δadgðλ2Þ and Δaphðλ2Þ are through the partial

differences between aðλ1Þ and aðλ2Þ (aðλ1Þ–ζaðλ2Þ
and ξaðλ2Þ–aðλ1Þ, respectively; see Eq. (10)). There-
fore, it is necessary to know the algorithm-introduced
uncertainty of the partial differences for analyzing
Δadgðλ2Þ and Δaphðλ2Þ. Define a12ζ as

a12ζ ¼ aðλ1Þ − ζaðλ2Þ: ð15Þ

Then, after a simple mathematical manipulation,
a12ζ is

a12ζ ¼ bbpðλ0Þ
�
Aðλ1Þ

�λ0
λ1

�η
− ζAðλ2Þ

�λ0
λ2

�η�
þ σ: ð16Þ

Here σ is
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σ ¼ Aðλ1Þbbwðλ1Þ − ζAðλ2Þbbwðλ2Þ; ð17Þ

which has no dependence on both aðλ0Þ and η.
Following Eq. (12b), when bbpðλ0Þ and η have uncer-

tainties, the uncertainty of a12ζ, Δa12ζ, is

ðΔa12ζÞ2 ¼
�
Δbbpðλ0Þ

�
Aðλ1Þ

�λ0
λ1

�η
− ζAðλ2Þ

�λ0
λ2

�η��2

þ
�
bbpðλ0Þ

�
Aðλ1Þ

�λ0
λ1

�η
ln
�λ0
λ1

�

− ζAðλ2Þ
�λ0
λ2

�η
ln
�λ0
λ2

��
Δη

�
2
: ð18Þ

Therefore, with Δζ and Δξ for uncertainties of ζ
and ξ, respectively, Δadgð λ2Þ is

ðΔadgðλ2ÞÞ2 ¼ ðΔa12ζÞ2
ðξ − ζÞ2

þ
�
a12ζ − awðλ1Þ þ ζawðλ2Þ

ðξ − ζÞ2 Δξ
�

2

þ
�
awðλ2Þ − aðλ2Þ

ξ − ζ Δζ

þ a12ζ − awðλ1Þ þ ζawðλ2Þ
ðξ − ζÞ2 Δζ

�
2
: ð19Þ

Similarly, for the uncertainty of aphðλ2Þ, we define
a21ζ as a21ξ ¼ ξaðλ2Þ − aðλ1Þ:
Thus, Δaphðλ2Þ is

ðΔaphðλ2ÞÞ2 ¼ ðΔa21ξÞ2
ðξ − ζÞ2

þ
�
a21ξ þ awðλ1Þ − ξawðλ2Þ

ðξ − ζÞ2 Δζ
�

2

þ
�
aðλ2Þ − awðλ2Þ

ξ − ζ Δξ

−
a21ξ þ awðλ1Þ − ξawðλ2Þ

ðξ − ζÞ2 Δξ
�

2
; ð21Þ

with

ðΔa21ξÞ2 ¼
�
Δbbpðλ0Þ

�
ξAðλ2Þ

�λ0
λ2

�η
− Aðλ1Þ

�λ0
λ1

�η ��
2

þ
�
bbpðλ0Þ

�
ξAðλ2Þ

�λ0
λ2

�η
ln
�λ0
λ2

�

− Aðλ1Þ
�λ0
λ1

�η
ln
�λ0
λ1

��
Δη

�
2
: ð22Þ

In Eqs. (19) and (21), values of all parameters are
given or derived from rrsðλÞ; consequently the uncer-
tainties of QAA-derived adgðλ2Þ and aphðλ2Þ can be es-
timated for each rrsðλÞ. Because aphðλ2Þ and adgðλ2Þ
are next level products from rrs inversion [26], i.e.,
derivative products of aðλÞ, uncertainties associated

with inverted aphðλ2Þ and adgðλ2Þ are much more
complex when compared to that of bbpðλÞ or aðλÞ.

3. Data to Quantify Uncertainties of Inherent Optical
Properties Derived by Quasi-Analytical Algorithm

Ideally, error-free field measured data are used to de-
rive and quantify uncertainties of algorithm-derived
products. When an error-bearing data set is used, it
is difficult to assign the difference between algorithm
outputsandmeasurements toalgorithmerror ormea-
surement error.Because there is no error-free data set
from field measurements, and the purpose of this
study is to isolate and evaluate uncertainties intro-
duced by the algorithm alone, we simulated a data
set that best represented natural variability, includ-
ing both IOPs and rrs, in a fashion similar to the Inter-
national Ocean-Colour Coordinating Group (IOCCG)
Algorithm Working Group [19].

Generation of the data set starts with the creation
of spectral IOPs, bb and a, in particular:

aðλÞ ¼ awðλÞ þ aphðλÞ þ adgðλÞ;
bbðλÞ ¼ bbwðλÞ þ bbpðλÞ: ð23Þ

Values for awðλÞ and bbwðλÞ are already known
[33,39], and the following optical models were used
to create spectra of the other components:

aphðλÞ ¼ aphð440Þaþ
phðλÞ;

adgðλÞ ¼ adgð440Þe−Sðλ−440Þ;

bbpðλÞ ¼ bbpð440Þ
�
440
λ

�η
: ð24Þ

Here aþ
phðλÞ is the aphð440Þ-normalized phytoplank-

ton absorption coefficient, which provides a spectral
shape for aphðλÞ. Both aphð440Þ, in a range of∼0:0056–
0:42m−1, and aþ

phðλÞ were taken from the IOCCG da-
tabase [19]. Although the spectral adg and bbp models
are idealistic, thesmalldeviationsareconsideredhav-
ing negligible effects to the analyses here.

Because the estimation of aðλ0Þ in QAA depends
completely on the spectral shape of rrsðλÞ, which is
primarily determined by the shape and magnitudes
of aphðλÞ and adgðλÞ (they are, in general, selectively
stronger in the shorter wavelengths) and the shape of
bbpðλÞ (its magnitude is nearly canceled out in the rrs
band ratios), we systematically varied adgðλÞ and η
for each aphðλÞ, but left bbpð440Þ varying in a random
way, similar to the IOCCG data set. Specifically, the
magnitude parameters of adgð440Þ and bbpð440Þwere
determined as follows:

adgð440Þ ¼ p1aphð440Þ;
bbpð440Þ ¼ p2ðaphð440Þ þ adgð440ÞÞ: ð25Þ

The value p1, which describes the ratio of
adgð440Þ=aphð440Þ, was varied from 0.2 to 7.0 with
a step of 0.2 (35 p1 values). The spectral slope of
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adgðλÞ, S, was varied from 0.01 to 0.02 with a step of
0.002 (6 S values). The spectral shape of bbpðλÞ, η, was
varied from 0 to 2.0 with a step of 0.2 (11 η values).
The value p2 was used to generate bbpð440Þ (and then
bbpðλÞ, when associated with values of η) and was
determined by the following:

p2 ¼ 0:001þ 0:3Raphð440Þ
0:006þ aphð440Þ

; ð26Þ

with ℜ a random value between 0 and 1. Therefore
p2 is in a range between 0.001 and 0.3, and between
0.001 and 0.15 at the lower end and a wider range for
larger aphð440Þ values, in a way to mimic natural
variations. In QAA, because bbpðλÞ is analytically de-
rived, the way of p2 variation does notmatter here, as
long as the overall range is consistent with natural
environments.
Based on the above setup, there are 2310 ð35 × 6 ×

11Þ combinations of adgðλÞ and bbpðλÞ for each aphð440Þ
value. Since there are 20 different aphð440Þ values in
the IOCCG database, we created a data set with
46,200 combinations of aphðλÞ, adgðλÞ, and bbpðλÞ,
and then aðλÞ and bbðλÞ. Note that aþ

phðλÞ is not the
same for the same aphð440Þ value in the IOCCG data-
base; thus the spectral variability of aphðλÞ within
each group is maintained here.
After aðλÞ and bbðλÞ are known, to bemore efficient,

rrsðλÞ is modeled using Eq. (2) instead of using Hydro-
light [40]. This is also because we are assuming a per-
fect analytical model between the apparent optical
properties (AOP: rrsðλÞ) and the IOPs (bb and a) and
focusing on uncertainties of aðλ0Þ and η (and ζ and
ξ) and their propagations in the QAA system. Indeed,
there is a <10% error associated with Eq. (2) [29,41],
which has a bigger effect on the retrieval of bbp when
bbp is extremely small, e.g., for waters in the oceanic
gyres [42]. However, errors associated with the rrs
model can be corrected later when a more accurate
model is adopted (Lee et al, in preparation), and such
a correction will not affect the general conclusions

about the uncertainties of aðλ0Þ, η, ζ, and ξ and their
propagations to other IOPs.

The wavelengths used in this study (410, 440, 490,
550, and 670nm) do not exactly match those from the
current operational satellite sensors such as Sea-
WiFS/MODIS/MERIS. The spectral differences of the
corresponding bands, however, are so small that re-
sults and conclusions achieved here are applicable to
those ocean color systems. Figure 2(a) presents values
and ranges of the simulated að440Þ and að550Þ, and
Fig. 2(b) illustrates values and ranges of rrsð440Þ
and rrsð550Þ. The figures also show equivalent data
from field measurements (NOMAD) [38]. Both charts
demonstrate a wide range of values at 440nm for a
given value at 550nm, as expected in natural aquatic
environments (simulated absorption actually has a
wider range than current NOMAD values). These
comparisons indicate that the simulated data set is
consistent, in both magnitude and variability, with
data from field measurements. A unique feature of
the simulated data set, however, is that it is free of
measurement errors, and thus well suited to identify
and analyze algorithm introduced uncertainties.

4. Results and Discussion

A. Uncertainty in the Estimated aðλ0Þ
As shown by Eq. (14), one key component in the QAA
system is the estimation of aðλ0Þ, because it is one of
the properties that initiates the entire sequential pro-
cess. Figure 3(a) illustrates derived að550Þ [from
Eq. (5), 550nm is considered λ0 here; also note that
sensor specific coefficients are required to obtain con-
sistent results across different sensors] versus known
að550Þ. Because Eq. (5) is not perfect, there is an error
(big or small) associatedwith each invertedað550Þ. To
highlight the range of errors between known and
inverted að550Þ, Fig. 3(b) shows the distribution of
the absolute percentage error (ape): jað550Þknown−

að550ÞQAAj=að550Þknown. About 57% of the data have
an ape within ∼13%, and about 70% of the data have
an ape within 20%. The overall average of ape is
15.6%.

Fig. 2. Examples of simulated optical properties at 440 and 555nm (a) for absorption coefficients and (b) for remote-sensing reflectance
(subsurface). For comparison, corresponding values from the NOMAD data set [38] are also plotted. For NOMAD, there are 915 pairs of
absorption coefficients, while there are 984 pairs of reflectance coefficients, but there are 46,200 pairs of values for the simulated data sets.
The NOMAD rrs values were converted from above-surface remote-sensing reflectance (Rrs) with rrs ¼ Rrs=ð0:52þ 1:7RrsÞ.
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To evaluate the error for different að550Þ values, we
divided the data set into 30 groups that correspond to
a narrow range of að550Þ (within�2% of a designated
að550Þ). The designated að550Þ values are 0.058,
0.063, 0.069,…, 0.374, 0.389, to 0:405m−1, with an in-
crease rate of ∼8% at the lower end and ∼4% at the
higher end.As remotely the “true”að550Þ is unknown,
the designation of að550Þ is based onQAA-derived va-
lues. Note that the að440Þ is in a range of ∼0:013–
0:085m−1 for the group with að550Þ ¼ 0:058m−1

(slightly higher than theabsorption coefficient of pure
water at this wavelength [33], 0:0565m−1), and is in a
range of ∼0:9–2:8m−1 for the group with að550Þ ¼
0:405m−1. Such ranges indicate that the að550Þ
range, ∼0:058–0:4m−1, covers all oceanic and most
coastal waters. We limited the analyses to að550ÞQAA
≤ ∼0:4m−1 also because thatQAA-derivedað550Þgra-
dually plateaus at ∼0:5m−1, which suggests that the
current version of QAA contains higher uncertainties
when QAA-derived að550Þ > 0:5m−1, i.e., for extre-
mely turbid waters. For such cases, a reference wave-
length longer than 550nm is needed (e.g., Lee et al.
[23] and Doron et al. [14]).
For each point, the absolute difference (ε), or

error, between QAA-derived and known að550Þ is
calculated:

ε ¼ jað550Þknown − að550ÞQAAj; ð27Þ

along with its relative difference, i.e., ε=að550ÞQAA.
As examples, Fig. 4 shows the distributions of ε=a
ð550ÞQAA for six groups with different að550ÞQAA val-
ues. For this simulated data set with the current ver-
sion of QAA, the relative differences, ε=að550ÞQAA,
are centered at the lower end of the values. In parti-
cular, for waters with low að550ÞQAAð< 0:076m−1Þ,
70% or more of the true að550Þ are within �10% of
að550ÞQAA; when að550ÞQAA becomes larger, e.g.,
0:2m−1 or more, some of the true að550Þ could be
off by �60% of að550ÞQAA. These results demonstrate
that the errors or uncertainties in ocean color remote
sensing are not uniform, as recently found by Moore

et al. [9] when empirically retrieved chlorophyll-a
concentrations were evaluated.

The uncertainty of QAA-derived að550Þ, Δað550Þ,
is defined as the average of ε for each group because
it approximates the 65th percentile of the ε distribu-
tion; see Fig. 5. By this definition, there is a 65%
likelihood that the “true” að550Þ will be within
að550ÞQAA �Δað550Þ. Figure 5 shows the relative
uncertainties ðΔað550ÞÞ=að550ÞQAA, with að550ÞQAA
the average að550ÞQAA of each group) for the various
að550Þ groups. For að550ÞQAA < 0:1m−1, which covers
∼95% of global waters (Bryan Franz, personal com-
munication),Δað550Þ=að550ÞQAA is in general <16%.
Since að550Þ is dominated by the contribution of pure
water, the uncertainty associated with QAA derived
að550Þ is limited for most oceanic waters. On the

Fig. 3. (a) QAA-derived að550Þ compared with known að550Þ of the simulated data set. Statistics of data in log scale are shown in the
figure. (b). Histogram of absolute percentage error in linear scale, jað550Þknown − að550ÞQAAj=að550Þknown. The average of this error is 15.6%.

Fig. 4. Histograms of jað550Þknown − að550ÞQAAj=að550ÞQAA for a
few designated að550ÞQAA values. The first value in a figure repre-
sents að550ÞQAA, and the second value represents the number of
points for that að550ÞQAA group (see text for details).

20 January 2010 / Vol. 49, No. 3 / APPLIED OPTICS 375



other hand, uncertainties are higher [larger Δa
ð550Þ] for higher að550Þ values, where marine optical
and biogeochemical properties are more complex.
To derive Δað550Þ for any given að550ÞQAA, a best-

fit empirical relationship between Δað550Þ and
að550ÞQAA was derived (dotted line in Fig. 5):

Δað550Þ ≈ 0:35ð1 − 2:4 expð−16:0 að550ÞQAAÞÞ
× að550ÞQAA: ð28Þ

Because að550Þ in our simulated data set has a
wider range and higher variability than in the NO-
MAD data set (see Fig. 2), Δað550Þ of real environ-
ments could be smaller than that represented by
Eq. (28), assuming high-quality rrs.
In the above analysis the number of points of each

group spans from2812 ½að550ÞQAA ¼ 0:058m−1� to 401
½að550ÞQAA ¼ 0:405m−1�. To test the effect of the num-
ber of points on the evaluation ofΔað550Þ,we changed
the lower-upper bounds of each group from within

�2% to within �5% of the designated að550Þ, result-
ing in nearly double the number of points for each
group [4873 for að550ÞQAA ¼ 0:058m−1, and 962 for
að550ÞQAA ¼ 0:405m−1]. We found negligible effects
to the statistical results shown in Fig. 5, which pro-
vides confidence thatΔað550Þ values shown in Fig. 5
are not sensitive to að550Þ grouping so long as narrow
bounds are maintained.

B. Uncertainty in the Estimated bbpðλ0Þ
WithΔað550Þ known, the uncertainty of bbpð550Þ can
be easily calculated [see Eq. (13a)]. Figure 6(a) pre-
sents the relativeuncertainties ofbbpð550Þ ½Δbbpð550Þ
=bbpð550ÞQAA� of the simulated data set, which are
generally in a range of ∼2–40%, but can approach in-
finity when derived bbpð550Þ nears zero. Although
Δað550Þ is fixed for a givenað550ÞQAA, the relativeun-
certainty ofbbpð550Þdiffers for the sameQAA-derived
bbpð550Þ values. This can be explained, combining
Eqs. (6) and (13a), by

Δbbpð550Þ
bbpð550ÞQAA

¼ Bð550ÞΔað550Þ
Bð550Það550ÞQAA − bbwð550Þ

: ð29Þ

Different combinationsofBð550Þandað550ÞQAA can
result in the same bbpð550Þ. Different að550ÞQAA val-
ues,however, comewithdifferentΔað550Þvalues, and
Bð550Þ does not cancel out in Eq. (29) until bbw
ð550Þ is negligible,which therefore results in different
Δbbpð550Þ.

To illustrate how QAA performs for oceanic waters,
Figure 6(b) shows the relative uncertainties of
bbpð550Þ for data with að550Þ ≤ 0:065m−1 and indi-
cates that generally the relative uncertainty is less
than or around �10% for bbpð550ÞQAA in the range
of 0:0003–0:003m−1. Such a result suggests that the-
oretically highly reliable bbpð550Þ can be retrieved
from spectral remote sensing reflectance for such
waters by QAA. For realistic systems, however, the
accuracy of bbpð550Þ also depends on the accuracy
of Bð550Þ and the absorption [33,43] and backscatter-
ing coefficients [44,45] of pure water.

Fig. 5. Relationships betweenΔað550Þ=að550ÞQAA and að550ÞQAA
for að550ÞQAA up to 0:4m−1. The values of Δað550Þ from two dif-
ferent calculations are presented; one (open square) is the average
of jað550Þknown − að550ÞQAAj of each group, and the other (gray tri-
angle) is the 65th percentile of jað550Þknown − að550ÞQAAj of each
group. The solid dots represent an empirical fit [Eq. (28) divided
by að550ÞQAA] for easy evaluation of Δað550Þ.

Fig. 6. Relative uncertainty of QAA-derived bbpð550Þ (a) for the entire simulated data set and (b) for data with að550Þ < 0:065m−1.
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C. Uncertainty in the Estimated aðλÞ
The calculation of ΔaðλÞ requires knowledge of the
uncertainty of Δρðλ; λ0Þ, which is represented by
Δη [Eq. (14)]. Unfortunately, the spatial variability
of Δη is unknown, although global maps of η have
been produced [23,46]. Also, there is not enough
high-quality measured data to evaluate a confidence
range of η for various regions, although the expres-
sion [Eq. (8)] generally captures the trend of higher
values in oceanic waters and lower values in coastal
waters [47]. Unlike the total absorption coefficients
that have a general spectral dependence, governed
by the spectral shapes of the multiple components,
η is a parameter used to determine the spectral de-
pendence of bbp. Therefore, unlike Δaðλ0Þ, Δη could
not be evaluated with a simulated data set. Instead,
based on a comparison (not presented here) between
rrs estimated η [Eq. (8)] and calculated η from mea-
sured bbpðλÞ of the NOMAD data set, a Δη ¼ 0:5,
which represents the 68th percentile of the absolute
η difference, was assigned universally. This assigned
value represents a high variability; i.e., if the true η
value is 1.0, Δη ¼ 0:5 suggests an η range of 0.5–1.5
[ρð440; 550Þ, range of∼1:12–1:40] for 68% of the sam-
ples, which cover nearly all waters.
To show the different contributions of Δaðλ0Þ and

Δη toΔaðλÞ, Eq. (14) is applied to the simulated data
set. As an example, Δað440Þ is calculated with
Δað550Þ andΔη separately, and then calculated with
both. Figure 7 presents their relative contributions
and the combined effects,with theY axis forΔað440Þ=
að440ÞQAA, the relative uncertainty. Clearly, 1) there
are different Δað440Þ for the same að440ÞQAA (see
Fig. 7), as its inversion is also associatedwith particle
scattering properties, and 2) Δað550Þ and Δη con-
tribute differently to Δað440Þ. For relatively clear
waters ½að550Þ < 0:08m−1�, because að550ÞQAA is
quite accurate, the contribution of Δað550Þ to
Δað440Þ is limited (the blue dots in Fig. 7). The con-
tribution ofΔη toΔað440Þ, on the other hand, could be

higher than that from Δað550Þ, as its effect also de-
pends on the value ofBð550Þ, which is directly related
to the value of rrsð550Þ and the rrs model used. For
coastal turbid waters, however, the maximum contri-
bution from Δη is ∼11%, which approximates the
square root of 550/440. ButΔað550Þ in general contri-
butes more toΔað440Þ for complex waters, simply be-
cause Δað550Þ itself gets larger. Note that for a
specific case, because the overestimation or underes-
timation of aðλ0Þ or η are not necessarily in phase for a
measured rrsðλÞ, the effects of errors in aðλ0Þ and η on
bbpðλÞ and aðλÞ are not necessarily compounded. If one
is overestimated while the other is underestimated,
the actual error in the derived bbpðλÞ and aðλÞ could
be minimal.

The above results suggest that for waters with
að440ÞQAA ≤ 0:05m−1 (most oceanic waters, Bryan
Franz, personal communication), the “true” að440Þ
value is most likely within �9% of að440ÞQAA, and
could be within �2% of að440ÞQAA, if rrs measure-
ments and models are highly reliable. This result
and the result about bbpð550Þ indicate that since rrs
is a cumulative measure of the upper tens of meters
of such waters [48], rrs inversion is an efficient and re-
liable sampling method for measurement of optical
properties of many oceanic waters. Note that tradi-
tional water sampling approaches require either long
path-length tubes (e.g., ac-9, Wetlabs, Inc.) or a large
volume of water samples [49,50] to obtain reliable in
situ measurements for such waters.

Separately, because the diffuse attenuation coeffi-
cient of downwelling irradiance (Kd) is a simple func-
tionofaandbb [51,52], theaboveanalysis caneasilybe
extended to evaluate the uncertainties associated
withthesemianalyticallyderivedKd products [51,52].

D. Uncertainty in the Estimated adgð440Þ and aphð440Þ
The uncertainties of adgð440Þ and aphð440Þ are asso-
ciatedwith both the uncertainties of theQAA-derived
aðλÞ and the uncertainties of parameters ζ and ξ. The
parameter ζ varies in a relatively small range (0.7–
1.0) based on field measurements [53], but ξ could
have much wider variations. When fitting measured
adgðλÞwith an exponential function, the spectral slope
(S) is generally in a range of 0:01–0:02nm−1 [49,54–
56], which suggests a range of ∼1:35–1:82 for ξ.
Because it is not clear yet how to best assign values
for both ζ and ξ for an individual pixel, we chose to
assign a constant value of 0.85 for ζ (the mode of NO-
MAD,not shownhere) and1.568 for ξ,which is equiva-
lent to S ¼ 0:015nm−1, or a power value of 6.8 when
adgðλÞ is fitted with a power-law function of wave-
length [56]. Further, we set a universal uncertainty
ofΔζ as 0.1 andΔξ as 0.14, which indicates a ζ range
of 0.75–0.95 and a ξ range of 1.43–1.71 (equivalent S
range of 0:012–0:018nm−1); both cover a majority of
oceanwaters.Note that these values and ranges could
be refined later afterweacquire additional knowledge
about their ways of variations.

With the above values for ζ, ξ,Δζ,Δξ, andΔað550Þ
and Δη for each rrsðλÞ, values of Δadgð440Þ and Δaph

Fig. 7. (Color online) Relationship between relative uncertainty
of að440Þ½Δað440Þ=að440ÞQAA; red� and QAA-derived að440Þ. Also
shown are contributions of Δað550Þ (blue) and Δη (green),
respectively, to the relative uncertainty.
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ð440Þ were calculated and are presented in Figs. 8
and 9(a). The separate contributions of Δζ, Δξ,
and Δa are also presented in order to demonstrate
their relative importance in Δadgð440Þ and
Δaphð440Þ, respectively. We do not present percen-
tage-like error for adgð440Þ, or aphð440Þ, as shown
in Figs. 5–7, because when að410Þ and að440Þ en-
counter larger errors, it can numerically result in ne-
gative or close to zero values (∼8% of this data set), or
very large values, for adgð440Þ [or aphð440Þ] (com-
monly referred to as nonvalid retrieval in semiana-
lytical algorithms [20,22,27]). Dividing Δadgð440Þ
[or Δaphð440Þ] to such QAA-derived adgð440Þ [or
aphð440Þ] values could result in a misleading per-
spective of relative uncertainty. The Δadgð440Þ [or
Δaphð440Þ] values, along with their corresponding
adgð440Þ [or aphð440Þ] values, provide adequate infor-
mation about the reliability of adgð440Þ [or aphð440Þ]
derived from a spectral rrs.
A few important findings can be drawn from the

results shown Figs. 8 and 9(a):

a. Not surprisingly, Δadgð440Þ and Δaphð440Þ
vary a lot. Their values and distributions are differ-
ent from each other, and different for the same QAA-
derived adgð440Þ and aphð440Þ values, respectively,

i.e., nonuniform uncertainties. And, for the same
QAA-derived adgð440Þ and aphð440Þ values, Δadg
ð440Þ is apparently smaller than Δaphð440Þ. For in-
stance, when QAA-adgð440Þ is 0:1m−1, Δadgð440Þ
could be as low as 0:02m−1, or as high as 0:09m−1.
When QAA-aphð440Þ is 0:1m−1, however, Δaphð440Þ
could be in a range of 0:02–0:7m−1. Such a result sug-
gests that fundamentally we could do better in anal-
ytically retrieving adg than retrieving aph. The
results also highlight the importance and necessity
of obtaining quality measurements for each inverted
adg and aph from rrsðλÞ.

b. Between Δadgð440Þ and Δaphð440Þ, it is inter-
esting that Δadgð440Þ generally increases with
QAA-derived adgð440Þ, but not QAA-derived Δaph
ð440Þ. This is primarily because the inversion of
adgð440Þ is proportional to aðλ1Þ–ζaðλ2Þ, while inver-
sion of aphð440Þ is proportional to ξaðλ2Þ–aðλ1Þ [see
Eq. (10)]. When absorption in the blue domain is ac-
tually composed with high adg that is also associated
with a large ξ value, say ∼1:8 (equivalent S value of
0:019nm−1) and then aðλ1Þ∼ 1:8aðλ2Þ, itmay result in
very small or negative aphð440Þ when a ξ value of
1.568 (equivalent S of 0:015nm−1) is used in QAA
(or other model-based analytical inversion methods).
For such a case, although the QAA-derived aphð440Þ
could be near zero or negative, Δaphð440Þ could be
very large, from a large Δa.

c. Obviously Δζ, Δξ, and Δa all contribute to
Δadgð440Þ and Δaphð440Þ. It is worth noting, how-
ever, that Δξ and Δa generally contribute more than
Δζ. In most cases, Δa values contribute more than
Δξ. This is because, since ξ is much larger than ζ,
a small change in aðλÞ could more strongly affect
aphð440Þ. Sometimes Δξ could contribute more than
Δa to Δaphð440Þ , again when adg dominates. These
results suggest that, as a first order estimation, it is
justified to use universal default ζ and ξ values for
operational processing ocean color images of global
oceans. For further improvement in analytically de-
riving aph from rrs, it is more important to get a better
estimation of ξ (or S) rather than ζ.

d. Figure 9(a) also highlights the potentially high
uncertainties associated with aphð440Þ when it is
algebraically derived from the blue portion of an

Fig. 8. (Color online) Uncertainty of QAA-derived adgð440Þ. Also
shown are the contributions of Δa, Δζ, and Δξ, respectively.

Fig. 9. (Color online) Uncertainty of QAA-derived aphð440Þ (a) for the entire simulated data set, with contributions of Δa, Δζ, and Δξ,
respectively; (b) for data with 0:06 ≤ adgð440Þ=aphð440Þ ≤ 2 and 1:43 ≤ adgð410Þ=adgð440Þ ≤ 1:72.
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rrs spectrum, especially when water’s absorption
coefficient is dominated by the contribution from
gelbstoff and/or detritus. In order to mitigate the un-
certainties associated with analytical aph inversion
for such environments, other approaches may be
necessary. These include utilization of fluorescence
line height [12,57], or using rrs information at other
bands, by incorporating spectral aphðλÞ models
[22,30,53] to add spectral constraints. Each spectral
model will introduce its own uncertainties because it
is still not certain about which spectral model for
aphðλÞ should be used for a specific water body.
e. On the other hand, if we restrict the analysis to

data with 0:6 ≤ adgð440Þ=aphð440Þ ≤ 2:0 and 1:43 ≤

ξ ≤ 1:72 (equivalent to 0:012 ≤ S ≤ 0:018nm−1) i.e.,
waters usually encountered in the open ocean [58],
the uncertainties of aphð440Þ are much narrower
[see Fig. 9(b)]. Such results support the strategy of
using rrsðλÞ in the blue domain to analytically derive
aphð440Þ for most oceanic waters.

5. Summary and Conclusions

Based on the algebraic and stepwise nature of QAA
and theory of error propagation, we developed anal-
ytical expressions [Eqs. (13a), (13b), (14), (19), (21),
and (28)] for uncertainties of QAA-derived IOPs.
These expressions provide the basis to evaluate
and understand the uncertainties associated with
analytically derived IOPs from remote sensing re-
flectance. Applying the expressions to a simulated
wide-range data set, we evaluated and illustrated
the uncertainties and their propagations associated
with the QAA procedure and products. Specifically,
we evaluated the uncertainties involved with the
QAA-derived aðλ0Þ, and further the propagation of
Δaðλ0Þ and Δη (when bbpðλÞ is expressed as a power-
law function) to other analytically derived IOPs. We
found that the effects of these two on aðλÞ are differ-
ent with Δη, potentially having a larger effect than
Δaðλ0Þ for waters with a low absorption coefficient
but high scattering coefficients, while Δaðλ0Þ has a
larger effect for coastal waters. In general, with
the current version of QAA and assuming that rrs
measurements and models are error free, the most
likely uncertainty of QAA-derived að440Þ is under
�13% for að440ÞQAA < 0:1m−1 but can be as much as
�37% for að440ÞQAA approaching 0:5m−1. However,
such uncertainties are not necessarily the same for
waters with the same aðλÞQAA values, since the uncer-
tainty of QAA-derived aðλÞ also depends upon the
value of bbp, and higher bbp could cause larger uncer-
tainty (resulting from error in bbp extrapolation). For
oceanic waters where particle backscattering is low,
such as oceanic gyres [42], an uncertainty of �5–10%
in QAA-derived að440Þ is expected.
Uncertainties of adg and aph are much more com-

plex from ocean color inversion, as their accuracies
depend not only on the accuracy of aðλÞ and their re-
lative contributions to aðλÞ, but also on their spectral
dependencies. There could be significantly high
uncertainties associated with algebraically derived

adg or aph, if the total absorption has a high uncer-
tainty and/or one of the two components dominates
the other. However, if adgð440Þ and aphð440Þ are com-
parable to each other, e.g., the ratio of one to the
other is between 0.5 and 2, it is well justified that
both properties could be well retrieved, analytically,
from the blue portion of rrsðλÞ. But, generally, for the
same adgð440Þ and aphð440Þ values, it is found that
uncertainties associated with adgð440Þ are smaller
than that of aphð440Þ.

For accurate derivation of adg and aph, the key com-
ponents are the accurate total absorption coefficients
in the blue/green domain and the spectral ratio of adg
of the relevant wavelengths. For the derivation of aph
in complex waters where aph is not the primary con-
tributor to the total absorption, methods/approaches
other than simple algebraic inversions are required
to improve the quality of aph retrieval.

These quality measures can be extended to biogeo-
chemical products, such as chlorophyll concentra-
tion), when the uncertainties between the optical
properties and biogeochemical products are known
per pixel. Although the evaluation results, especially
forΔað550Þ, might be dependent on the spectral mod-
els as well as the ranges and distributions of data
used, the ranges of the parameters, S and η in parti-
cular, of the simulated data set are quite inclusive
based on our current understanding, and therefore
the results and conclusions are general and applic-
able to global oceans. Modifications and refinements
are possible and expected when better parameteriza-
tions regarding aðλ0Þ, ρðλ; λ0Þ, and ζ and ξ for various
regions are developed.

This study shows that we can not only derive IOPs
from the various ocean color missions, but also have
necessary components for quantitatively measuring
the quality of such IOP products for each pixel. The
eventual generation of IOP quality maps, however,
will depend on our understanding and quantification
of the uncertainties of rrs derived from various plat-
forms over various waters [7,36,37], as well as uncer-
tainties associated with rrs models [41,59,60]. When
the uncertainties of these variables are available pix-
elwise, they can be incorporated following the theory
of error propagation for the generation of IOP quality
maps from satellite ocean color remote sensing.
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