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Abstract: About 30 years ago, NASA launched the first ocean-color observing satellite: 

the Coastal Zone Color Scanner. CZCS had 5 bands in the visible-infrared domain with an 

objective to detect changes of phytoplankton (measured by concentration of chlorophyll) in 

the oceans. Twenty years later, for the same objective but with advanced technology, the 

Sea-viewing Wide Field-of-view Sensor (SeaWiFS, 7 bands), the Moderate-Resolution 

Imaging Spectrometer (MODIS, 8 bands), and the Medium Resolution Imaging 

Spectrometer (MERIS, 12 bands) were launched. The selection of the number of bands and 

their positions was based on experimental and theoretical results achieved before the 

design of these satellite sensors. Recently, Lee and Carder (2002) demonstrated that for 

adequate derivation of major properties (phytoplankton biomass, colored dissolved organic 

matter, suspended sediments, and bottom properties) in both oceanic and coastal 

environments from observation of water color, it is better for a sensor to have ~15 bands in 

the 400 – 800 nm range. In that study, however, it did not provide detailed analyses 

regarding the spectral locations of the 15 bands. Here, from nearly 400 hyperspectral (~ 3-

nm resolution) measurements of remote-sensing reflectance (a measure of water color) 

taken in both coastal and oceanic waters covering both optically deep and optically shallow 

waters, first- and second-order derivatives were calculated after interpolating the 

measurements to 1-nm resolution. From these derivatives, the frequency of zero values for 

each wavelength was accounted for, and the distribution spectrum of such frequencies was 

obtained. Furthermore, the wavelengths that have the highest appearance of zeros were 

identified. Because these spectral locations indicate extrema (a local maximum or 

minimum) of the reflectance spectrum or inflections of the spectral curvature, placing the 
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bands of a sensor at these wavelengths maximizes the potential of capturing (and then 

restoring) the spectral curve, and thus maximizes the potential of accurately deriving 

properties of the water column and/or bottom of various aquatic environments with a 

multi-band sensor.  

 

Keywords: Ocean-color remote sensing, spectral bands 

 

1. Introduction 

Since the successful demonstration of the Coastal Zone Color Scanner (CZCS) in measuring the 

spatial and temporal variation of phytoplankton via observation of ocean color (Gordon et al. 1983; 

Gordon and Morel 1983), the importance of observing ocean and coastal waters with sensors in the 

visible domain is getting more and more attention from various countries. After the launch of the Sea-

viewing Wide Field-of-view Sensor (SeaWiFS) and the Moderate-Resolution Imaging Spectrometer 

(MODIS) satellites about ten years ago, and the successful and extraordinary results of such data since 

then, additional satellite sensors have been (or planned to be) launched for the observation of 

biogeochemical properties via water color. These include the COCTS of China, the MERIS of ESA, 

the OCM of India, and the GOCI of Korea (IOCCG 1998), to name a few.  

 

Figure 1. Examples of measured spectral remote-sensing reflectance (Rrs) used in this study. Overlaid 

are spectral bands (location and width) of CZCS, SeaWiFS, MODIS, and MERIS. 

 

Ideally, to maximize the potential of observing properties of aquatic environments and their 

temporal and spatial changes, it is best to have a sensor capable of collecting signals with a continuous 

spectrum. After consideration of data flow, processing, and storage as well as signal-to-noise ratios, 

satellite sensors commonly have a few bands in the visible and near-IR domain (IOCCG 1998). For 

Wavelength  [nm]

400 450 500 550 600 650 700 750 800

R
rs
  
[s

r-1
]

0.000

0.003

0.006

0.009

0.012

0.015

Wavelength  [nm]

400 450 500 550 600 650 700 750 800

R
rs
  
[s

r-1
]

0.000

0.003

0.006

0.009

0.012

0.015

CZCS

SeaWiFS

MODIS

MERIS



Sensors 2007, 7                            

 

 

3430

instance, the CZCS had five bands, while SeaWiFS and MODIS have seven (or eight) bands (with 

slightly different configurations). To show the spectral coverage of these operational satellite sensors, 

Figure 1 presents examples of remote-sensing reflectance spectra, along with the overlaid spectral 

bands (location and width) of CZCS, SeaWiFS, MODIS, and MERIS. Clearly, for the widely varying 

reflectance spectra, MERIS collects more spectral information, whereas MODIS and SeaWiFS could 

miss some important spectral signatures (such as the peak at ~709 nm and information between 560 – 

650 nm), and that CZCS could not observe the reflectance peak at ~480 nm and the reflectance 

variation in the blue wavelengths (Carder et al. 1989). 

Selection and positioning of those spectral bands were based on measurements and optical 

characteristics (both absorption and scattering) of phytoplankton and colored dissolved organic matter 

(IOCCG 1998). 30 years ago, from 31 measurements of spectral reflectance for waters off the Oregon 

coast, Mueller (1976) demonstrated that reflectance spectra could be reconstructed with four principal 

vectors, suggesting that there are only four major variables for reflectance, and thus implying a 

requirement of 4 bands or so for an ocean color sensor. Similarly, for measurements made in the New 

York Bight region and also based on principal component analysis, Sathyendranath et al. (1994) 

concluded that a sensor with 5 bands (413.5, 447, 515, 560, 638.5 nm) can be as effective as 32 bands 

for the derivation of chlorophyll concentration. Mueller, however, cautiously pointed out that such 

conclusions are sensitive to the data sets used for the study. For instance, Dekker et al. (1992) 

indicated that 9 bands in the 500 – 800 nm range are needed to adequately cover the spectral 

curvatures of inland waters, and Wernand et al (1997) suggested another set of 5 bands (412, 492, 556, 

620, and 672 nm) to re-construct hyperspectral reflectance for waters off the coasts of Netherlands. 

More importantly, the statistically-determined principal vectors are not physically intuitive in 

interpreting the spectral reflectance (Mueller 1976).  

In general, the spectral configurations of current operational satellite sensors are designed for 

monitoring chlorophyll concentrations (index of phytoplankton) and colored dissolved organic matter 

(CDOM) in the open oceans, but have not been optimized for remote-sensing of complex coastal 

waters. Lee and Carder (2002) demonstrated that for adequate remote sensing of major properties 

(water column and bottom) of both open ocean and complex coastal aquatic environments, a sensor 

requires ~ 15 spectral bands in the 400 – 800 nm range in order to obtain similar results as a sensor 

with 81 consecutive bands with 5-nm spacing. It is not yet clear, however, where the 15 bands should 

be placed. 

In this study, from nearly 400 measurements of hyperspectral remote-sensing reflectance from 

various oceanic and coastal waters, we derived the spectral locations of the optimal bands via first- and 

second-order derivatives of the remote sensing reflectance for future advanced multi-band sensors for 

observing properties of aquatic environments. These bands can thus capture most of the spectral 

variations in remote-sensing reflectance caused by differing water-column and/or bottom properties, 

and be sufficient to re-construct hyperspectral remote-sensing reflectance spectra if desired.  
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Table 1. Data used in this study (a total of 384 stations). 

AREA DATE # OF 
MEASUREMENTS 

[CHL] RANGE 
(MG/M 3) 

Gulf of Mexico Apr. 1993 24 0.07 – 49.0 

Florida Keys July 1994 5 0.06 – 0.5 

Arabian Sea Dec. 1994 20 0.3 – 0.9 

Chesapeake 
Bay 

Sept. 1996 36 1.7 – 20.7 

Hawaii Feb. 1997 6 0.1 – 0.3 

Florida Keys May 1997 8 N/A 

Bahamas May 1998 39 0.05 – 1.4  

East China Sea July 1998 37 0.5 – 2.8 

California 
Coast 

Oct. 1999 37 0.2 – 9.4 

North Atlantic July 2001 17 4.5 – 13.9 

Monterey Bay Apr. 2003 56 0.1 – 9.7 

Ft. Lauderdale July 2005 52 N/A 

Monterey Bay Sept. 2006 47 0.5 – 500 

 

 

2. Data and Methods 

Since 1993, for a span of more than 12 years, an extensive remote-sensing-reflectance suite of 

hyperspectral (~350 – 900 nm with a resolution ~3 nm) measurements for various aquatic 

environments was collected, most of which were taken by the Ocean Optics Lab led by Prof. Kendall 

Carder at the College of Marine Science of the University of South Florida. Table 1 summarizes the 

cruises and general information of the various environments. The measured waters included open 

ocean blue waters to turbid coastal yellowish waters and optically shallow waters (bottom depths in a 

range ~ 1 – 25 m). Wide ranges of concentrations of chlorophyll and dissolved organic matter and 

suspended sediments, along with different types of phytoplankton were encountered during these 

measurements.  

 Spectral remote-sensing reflectance (Rrs(λ)) is defined as the ratio of water-leaving radiance to 

downwelling irradiance. The Rrs spectrum contains sub-surface information of water constituents 

and/or bottom properties (when the bottom is optically shallow). Using a handheld spectroradiometer 

(Spectron Model SE-590 of Spectron Engineering, Inc. before 1997; SPECTRIX (Steward et al. 1994) 

for 1997 and later), a series (~ 3 to 5 scans) of upwelling radiance above the surface (Lu(0
+)) and the 

downwelling sky radiance (Lsky) were directly measured by the instruments for each station of the 

many cruises. All these measurements were carried out following the NASA protocols described in 

Mueller et al. (2002). 
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The measured Lu is a sum of photons emerged from subsurface scattering (the desired signal) plus 

surface-reflected sky and solar light (noise). Downwelling irradiance was derived by measuring the 

radiance (LR) reflected from a standard diffuse reflector (Spectralon®). For each of the collected scans, 

hyperspectral total remote-sensing reflectance (Trs(λ)) and sky reflectance (Srs(λ)) were derived 

through  
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with RR the reflectance of the diffuse reflector (Spectralon, ∼ 10%).  

Based on these measured Trs and Srs curves, after rejecting obvious outliers, averages of Trs and Srs 

for each station were obtained, respectively, in order to reduce the random variations associated with 

the measurements. Further, because Trs is the sum of water-leaving radiance and surface-reflected sky 

radiance, Rrs(λ) is calculated as (Austin 1974; Carder and Steward 1985) 

 

∆−−= )()()( λλλ rsrsrs SFTR ,    (2) 

 

where F is surface Fresnel reflectance (around 0.023 for the viewing geometry), and ∆ accounts for the 

residual surface contribution (glint, etc.). Figure 2 shows some examples of spectral Trs (Fig. 2a) and 

Srs (Fig. 2b). Srs spectra are monotonic decreasing functions of λ, whereas Trs spectra, because of the 

contribution of Rrs, show distinct variations from place to place. In the calculation of Rrs, ∆ was 

determined either by assuming Rrs(750) = 0 (clear oceanic waters) or iteratively derived relative to 

optical models (coastal turbid waters). Because we are interested in the first- and second-order 

derivatives of Rrs (see the following for details), inaccurate ∆ values have insignificant effects on this 

study. 

Figure 2. Examples of spectral total remote-sensing reflectance (Trs, 2a) and sky remote-sensing 

reflectance (Srs, 2b). 
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Rrs is a function of the total absorption and backscattering coefficients (Gordon et al. 1988; Lee et 

al. 2004; Zaneveld 1995) as well as bottom reflection (Lee et al. 1998; Maritorena et al. 1994). Spectra 

of backscattering coefficients, although normally stronger at shorter wavelengths, generally do not 

have strong spectral signatures (Boss et al. 2004; Loisel and Morel 1998; Twardowski et al. 2001). The 

spectrum of the total absorption coefficient, however, is a sum of the contributions of CDOM, various 

pigments contained in phytoplankton, plus water molecules (Gordon and Morel 1983; Smith and Baker 

1978; Stramski et al. 2001). These contributions are spectrally selective, and thus result in significant 

variations in the spectral signatures of the total absorption coefficient (Kirk 1994; Mobley 1994). The 

extreme values (local maximum or minimum) of Rrs(λ) and the inflections of Rrs(λ) indicate the 

spectral effects of different combinations of those optically active constituents and/or bottom 

properties. If a sensor has only a few spectral bands and is intended to best capture the spectral 

signatures of Rrs(λ), then these bands need to be positioned at wavelengths that can match the locations 

of those extrema and inflections of Rrs(λ), unless the Rrs(λ) values at those bands are perfectly 

correlated. The spectral locations for such Rrs(λ) values are those wavelengths with zero first- and 

second-order derivatives of Rrs(λ), respectively.  

To locate the optimal spectral positions for all collected samples, we thus carried out the following 

calculations: 
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where σ(λ) and ς(λ) are the first- and second-order derivatives of Rrs(λ), respectively. Note that 

derivative analysis of hyperspectral data is a widely used tool to highlight and enhance the spectral 

characteristics in various applications (e.g., Holden and LeDrew 1998; Tsai and Philpot 1998). Before 

calculating the derivatives, Rrs(λ) spectra were interpolated to 1-nm resolution and were smoothed with 

a 5-nm running average, in order to remove some of the random noises.  

 

3. Results and Discussions 
 

From all of the calculated σ(λ) and ς(λ) spectra, we obtained the spectral distributions (at 1-nm 

resolution) where σ(λ) and ς(λ) equal zero, respectively. Mathematically, these frequency distributions 

are, 

.
0)(

)(

,
0)(

)(

1

1

N
f

N
f

N

i
i

N

i
i

∑

∑

=

=

=
=

=
=

λς
λ

λσ
λ

ς

σ

     (4) 



Sensors 2007, 7                            

 

 

3434

Here σi(λ) and ςi(λ) are the ith σ(λ) and ς(λ) spectrum of the data set, respectively. Figures 3 and 4 

show fσ(λ) and  fς(λ), after a 5-nm running average was applied to highlight the major bands. The 

frequency distributions of σ(λ) and ς(λ) for wavelengths longer than 700 nm are not considered here, 

simply because that for oceanic and most coastal waters the Rrs values in those wavelengths are very 

small due to the strong absorption of water molecules and limited scatters in the water media. 

Consequently, Rrs in those wavelengths are either non-informative regarding constituents in water, or 

too noisy in the measured Rrs, except for highly turbid river plume or inland waters or clear and bright-

bottom shallow (< ~1 m) waters. 

Figure 3. Spectral distribution of the frequency where the first-order derivative of Rrs(λ) equals 0. 

 

 

For an Rrs(λ) spectrum, σi(λ) = 0 indicates that there is an extremum of Rrs at λ. For various waters, 

because of the different combinations of water constituents and/or bottom characteristics, the spectral 

locations of the extrema shift (see Fig. 1). The spectral distribution of fσ(λ) then summarizes, for all 

data in this study, the wavelength behavior in capturing the extrema. The greater the fσ(λ) value, the 

more appearances of an extrema at that λ. Although each wavelength shows some possibility of 

capturing extrema of Rrs, apparently, the bands that captured more extrema of Rrs are concentrated in 

seven bands (in the 360 – 700 nm range) instead of spectrally scattered evenly (see Fig. 3). The seven 

bands are centered at (rounded to nearest 0 or 5): 395, 440, 490, 515, 565, 665, and 685 nm. Such a 

result is not surprising. For instance, 440 nm is at the peak absorption of phytoplankton pigments 

(chlorophyll-a), which can result in a local minimum of Rrs(λ); on the other hand, 685 nm is around the 

peak of chlorophyll fluorescence, which then contributes a local maximum of Rrs(λ) (see Fig. 1). For 

the other peaks, such as 490 nm or 515 nm, they normally represent locations of Rrs maximum (see 

Fig. 1 and Fig. 2a), resulted from minimum absorption coefficients at those wavelengths (Kirk 1994; 

Mobley 1994). Therefore, a multi-band sensor requires at least these bands to adequately capture the 

extrema of the various Rrs(λ) spectra. 
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Figure 4. Spectral distribution of the frequency where the second-order derivative of Rrs(λ) equals 0. 

 

ς(λ) = 0, on the other hand, indicates an inflection of an Rrs(λ) curvature at λ, normally resulting 

from different combinations of pigments and water molecules, and/or bottom effects when the water is 

optically shallow. Table 2 summarizes the wavelengths that capture more inflection points of Rrs(λ) 

curves (also see Fig. 4). In contrast to the distribution of fσ(λ), the peak values of fς(λ) are much less 

concentrated spectrally. Interestingly, these bands cover the center wavelengths of the major pigments 

(Table 2) presented in Hoepffner and Sathyendranath (1991). Such a result supports the inclusiveness 

of the data set used in this study that covers a wide range of water environments, and encompasses 

various types of phytoplankton classes (resulting in minor changes in Rrs(λ) curvatures because of 

different pigment absorptions) and optically shallow environments. For a multi-band sensor, it is 

necessary to have bands that cover these wavelengths if properties other than chlorophyll concentration 

(such as pigment composition and/or bottom properties) are also desired from remote sensing of water 

color.  

Consolidating the major bands that have greater values of fσ(λ) and fς(λ) (and considering a 10-20 

nm bandwidth for satellite sensors), bands that optimally capture extrema and inflections of spectral Rrs 

are determined (see Table 2 and Fig. 5). These bands form the basis for a multi-band sensor to monitor 

aquatic environments (including optically shallow waters), although atmospheric absorption and solar 

Fraunhofer bands require minor adjustments of band positions for satellite sensors to improve global 

applicability. Interestingly, the analysis from the first- and second-order derivatives indicates 17 bands 

in the 385 – 800 nm range for the observation of ocean color, which echoes the findings of Lee and 

Carder (2002). Bands at 710 and 750 nm are added separately, where 710 nm is important for turbid 

coastal water and water with extreme phytoplankton blooms (red tide) (Dekker et al. 1992; Gower et 

al. 1999), and 750 nm and other near-infrared channels (e.g., see MODIS channels) are 

important/required for atmospheric correction (Gordon and Wang 1994) or for highly turbid inland or 

river plume waters (Dekker et al. 1992). 
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Table 2. Bands that capture more extrema and inflections of Rrs(λ). 

Wavelengt
h 

From  fσ(λ) From fς(λ) Proposed 
Bands 

H&S 
Bands* 

MODIS MERIS 

385  x 1 384   

395 x  2    

400  x 413 412 412 

425  x 3    

440 x  4 435 443 443 

445  x    

460  x 5 464   

475  x 6    

490 x  7 490 488 490 

510  x 8   510 

515 x     

520  x 532 531  

545  x 9    

555  x  551  

565 x  10   560 

580  x 11 583   

615  x 12 623  620 

635  x 13    

645  x 644   

655  x 655   

665 x  14  667 665 

670  x 676   

685 x  15  678 681 

710   16   709 

750 For atmosphere 
correction or turbid river 

plume water 

17  748 754 

760 For O2   760 

780 For atmosphere 
correction 

  779 

 

From Hoepffner and Sathyendranath (1991). 
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Figure 5. The spectral bands proposed in this study, overlaid are spectral bands of SeaWiFS, MODIS, 

and MERIS. The 750-nm band with dotted perimeter indicates that this band is mainly used for 

atmospheric correction. 

 

Table 2 also presents, for comparison, the spectral bands of MODIS and MERIS. Clearly, the 

wavelength selections of those sensors are in general supported by the results presented here. 

Comparing MODIS bands with those from this study or those of MERIS, the significant shortfall of 

MODIS (and SeaWiFS) is a band between 551 and 667 nm. Such a band is of great value for remote 

sensing of suspended sediments (IOCCG 2006) or remote sensing of optically shallow waters (Lee and 

Carder 2002). On the other hand, the band at 385 nm could be very useful either for the detection of 

red tide (Kahru and Mitchell 1998) or for atmospheric correction over coastal waters. 

Figure 6. Spectral distributions of correlation coefficients of Rrs(λ) at the bands (see Fig. 5) selected 

from first- and second-order derivative analyses (see text for details). The bands in the insert indicate 

the Rrs at those bands was used as the independent variable, respectively, while Rrs at other bands were 

considered as the dependent variable, a correlation coefficient for linear regression was then obtained 

for each Rrs pair. 
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To understand the inter-dependence of Rrs at the selected bands, linear regression analyses of the Rrs 

at the suggested bands were carried out, and a correlation matrix was obtained. Figure 6 presents a few 

examples of the correlation spectra. For instance, when Rrs(490) is selected as the independent 

variable, Rrs at all other bands are considered as dependent, and a correlation spectrum of Rrs is then 

obtained (Fig. 6). The results from this analysis re-emphasize some known facts: 1) Because the 

absorption and scattering effects of the individual water constituents are broad-band in nature, the 

correlation coefficients are high for Rrs(λ) separated by short wavelength distances. 2) Because the 

absorption coefficients of phytoplankton and CDOM are much stronger in the blue-green region than 

in the red-infrared region and that they vary independently in general, Rrs in blue-green bands have 

quite low correlations when compared with Rrs in red-infrared bands (slightly higher correlation for the 

670-690 chlorophyll a absorption and fluorescence region).  The high correlation coefficients of Rrs at 

adjacent bands indicate potential redundant measurements when a sensor is exactly equipped with the 

bands proposed. This is especially true for the bands of 615, 645, and 665 nm where the inter-

dependence is very strong (with correlation coefficients > 0.97). However, as pointed out in the 

IOCCG Report #1 (1998), “some redundancy is often essential to constrain the solutions”, especially 

for optically shallow waters where more spectral signal is required in order to adequately separate the 

information of the water column from that of the bottom. If one band has to be dropped out after 

considering such high correlation and high overlapping because of 10-20 nm bandwidth of each band, 

the 645 nm band can be removed from this list. The remaining 615 and 665 nm bands could ensure 

consistency and continuity with the observations of MODIS and/or MERIS. For waters of Case-1 

nature (Morel 1988), however, because the variations of both spectral absorption and backscattering 

coefficients are determined by chlorophyll concentration alone, Rrs at all wavelengths are correlated 

(Morel and Maritorena 2001). For such waters and simpler diagnostic requirements, the number of 

bands can be significantly reduced without losing much information. 

4. Summary 

In this study, based on extensive and inclusive measurements of hyperspectral remote-sensing 

reflectance curves from various aquatic environments, the primary bands (in the ~ 380 – 800 nm 

range) that optimally capture the spectral signatures of Rrs are determined via first- and second-order 

derivatives. These bands in general cover the operational bands of SeaWiFS, MODIS and MERIS, and 

provide important and useful suggestions and guidance for extra bands of future multi-band sensors, in 

order to provide more and improved results for remote sensing of oceanic and coastal waters. 

However, these bands are aimed for general observation of the majority (99% or more) of the global 

aquatic environments and are derived based on available measurements. As point out in Lee and 

Carder (2002), sensors with discrete spectral bands are always facing the possibility of missing 

important spectral features of special cases, such as some coral reefs and/or seagrass beds (e.g., Holden 

and LeDrew 1998). Sensors with higher spectral resolution (along with high spatial resolution) or 

specially placed bands could be more helpful for such special and challenging cases.  
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