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ABSTRACT

A Neural Network (NN) approach is studied in deriving information of bathymetry for
optically shallow waters. In this study, more than 7000 remote-sensing reflectance (ratio of water-
leaving radiance to downwelling irradiance above the surface) spectra for shallow waters were
created with a semi-analytical model. This synthetic data base covered chlorophyll-a concentrations
from 0.2 to 6 mg/m^3, water depths from 0.5 to 20 meters, and dark to bright-sand bottom albedos.
The multi-layer NN is trained with the synthetic data using a back-propagation algorithm, and
tested with both synthetic and field data. One advantage of using NN approach is that it reduces the
calculation time greatly compared to an early optimization method.

INTRODUCTION

Recently, an optimization method has been developed to retrieve bottom depth and in-water
properties from measured remote-sensing reflectance1. The method is proved accurate and
successful, however, it is too slow for image processing using current computers. A quick and
reliable method for bathymetry is desired. Over the past several years, more attention have been
paid for artificial neural networks (NN) for remote sensing applications2-7. For example, Key8 used
the Advanced Very High Resolution Radiometer (AVHRR) data in conjunction with the Scanning
Multichannel Microwave Radiometer (SMMR) for the classification of four land surface and eight
cloud classes in the Arctic. However, most applications of NN were toward the qualitative
classifications of remotely sensed images, few researches were focused on the quantitative
derivation of properties of interest. In this study, we investigate the application of using neural
networks to derive bottom depth. To design a neural network, large data base is required to well
train the neural network, which is  not available yet from field measurement, however. Computer
models9,10 are proved that they can generate shallow water spectra, but it is very time consuming.
We generate our data base of shallow-water remote sensing reflectance by a semi-analytical
model11, which is simple and easy with high accuracy. We used this synthetic data base to train a
neural network, and used both synthetic and field data to test it.
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NEURAL NETWORK

A neural network derives its computing power through its massively parallel distributed
structure and its ability to learn and therefore to generalize. A neural network is composed of a
number of neurons, which are arranged in different network layers and are connected by links.
Each link has a numeric weight associated with it. Weights are the primary means of long-term
storage in neural networks, and learning usually takes place by updating the weights12,13. By back-
propagation algorithm14, each training data is fed to the neural network through input layer; the
network output is compared with the desired results; if error is found, the network will iteratively
update the weights to reduce the error to an acceptable level.

However, the back-propagation learning algorithm is very slow for many applications, and
it scales up poorly as tasks become larger and more complex. Fahlman15 made several
modifications on the original back-propagation algorithm and introduced "quickprop" back-
propagation algorithm. The "quickprop" training algorithm is used in this work to train or neural
network.

Data Base

As no large filed data available, we used a semi-analytical model (SA-model) to create the
training data. The SA-model is,11
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where rrs (the sub-surface remote-sensing reflectance, ratio of the upwelling radiance to
downwelling irradiance evaluated just below the surface) is,
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and rdp
rs (remote-sensing reflectance for optically deep water) is,
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The path-elongation factors for scattered photons from the water column (DC
u) and bottom

(DB
u) are

DC
u | 1.2(1+2.0u)0.5, and DB

u | 1.1(1+4.9u)0.5, (4)
with,

u = bb/(a+bb) and N = a+bb. (5)
Where

bb = bbw + bbp, (6)
and

a = aw + aI+ ag. (7)
Note that it is the combination of Eqs.1-5 to provide the expression for Rrs. In Eq.1, 0.518 is

the water-to-air divergence factor, and (1-1.562 rrs) accounts for the internal reflection from water
to air, which is important for very shallow and/or very turbid waters.

To generate an Rrs spectrum from the semi-analytical model, spectra of aw(O), aI(O), ag(O),
bbw(O), bbp(O), U(O) and value of H are required after knowing the solar zenith angle. Values of
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aw(O), the absorption coefficients of pure water, were taken from Pope and Fry16. Values for bbw(O)
were from Morel17. The other variables were modeled as follows:

aI(O) = [a0(O) + a1(O) ln(aI(440))] aI(440) (Ref. 11); (8)

ag(O) = ag(440) e-0.015(O-440)  (Ref. 18); (9)
Y
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U(O) = B  Umea(O); (11)
where Umea(O) is a measured bottom albedo spectrum, with Umea(550) = 0.2.

Based on the above expressions, we only need to know the values of aI(440), ag(440),
bbp(550), B and Y to create an Rrs spectrum. To make the simulated data base more consistent with
the variation of natural environment, values of aI(440), ag(440), bbp(550), B and Y were determined
the following way,

aI(440) = 0.06 C0.65 (Ref. 19), (12)

ag(440) = f  aI(440), (13)

bbp(550) = 0.02  0.3  g  C0.62, (14)

with ranges for C, f, g, B and Y are provided in Table 1.

Table 1. Input values for the generation of Rrs data base.
v

ariable
values description

C 0.2 – 5.4,
every 0.6

Chlorophyll a
concentration;  mg/m3

f 0.6, 1.35,
2.4

Ratio of ag(440) to aI(440)

g 1, 4, 9 Scaling factor for bbp(550)
B .2, 1, 1.6 Scaling factor for bottom

albedo
H 0.5 – 20.0,

every 0.5
Bottom depth;  m

Y 0.3, 1.0, 1.7 Particle scattering spectral
slop

With the above considerations, a set of more than 7000 shallow-water Rrs spectra
(wavelength from 400 to 700nm every 10nm) were constructed. Part of this data (95%) were used
to train a neural network, the rest (5%) were used to test the trained network.
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Network Selection and Training

We used a fully connected, feedforward neural network with a multilayer perceptron
structure, and trained it by the "quickprop"  back-propagation algorithm15.

The input layer of the network consists of 30 input nodes. The output of the network
represents the water depth and is scaled into 0.0 to 1.0 by dividing the maximum value of bottom
depth for the training. Other parameters used in the training are left as defaults as those in the
"quickprop" algorithm15. In the network training phase, inputs from the training data are fed
forward through the network. The outputs of the network are compared with target water depth
(normalized). The sum square errors (SSE) between the network outputs and the desired outputs are
computed and further back-propagated through the network. Weights are adjusted, accordingly, to
reduce the SSE. Networks with different configuration (number of hidden neurons and one or two
hidden layers) were trained over 7000 shallow-water Rrs spectra for 10000 epochs. Each epoch
consists of 10 iterations. Through the training, for each network configuration, the weights of the
network with the minimum SSE are saved. We started with a one-layer network with 20 hidden
neurons and increased the number of neurons and the number of hidden layers.

It was found that a network with one hidden layer and 73 hidden neurons showed minimum
sum squared error (SSE) and that this network was chosen as optimum network architecture for this
study. Figure 1 shows the evolution of training accuracy in terms of SSE, plotted against the
number of epochs. The network's SSE first decreased rapidly with fluctuations through 500 epochs.
It stayed stable through epoch 2200 and followed by another series of fluctuations. During the
training from epoch 1000 to 2000, the weights of the network with minimum SSE were saved. The
network with 73 neurons and the saved weights are regarded as properly trained network and used
in the testing and further applications.

One Hidden Layer Network with 73 Neurons
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Figure 1. Taining performance of a one-layer network with 73 hidden neurons.



5

RESULTS AND DISCUSSION

The ultimate task of network learning is to apply the knowledge to unseen inputs and to
predict outputs of interest. Applying our trained neural network to a set of SA-model created
shallow-water Rrs (378 points), the average error for depth was about 18% (R2 = 0.897, see Figure
2). Apply this network to a field measured shallow-water Rrs data (15 points), the average error for
depth was 17% (R2 = 0.833, see Figure 3). These results suggest that the neural network developed
here works well in retrieving bottom depth of optically shallow waters, especially when it is desired
for image processing. However, due to the limitation of neural network itself, a neural network may
perform badly if the input is out of the training boundary. For better and wider applications, a
neural network with wider boundary and finer gradient may be required.

Figure 2. Depth comparison between input and NN output values (synthetic data).

Figure 2. Depth comparison between input and NN output values (field data).
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