Biol 112

Lecture 3: Evolution and Population Genetics

LAB REMINDERS

- This week lab will take place at the HMNH
- TURN IN YOUR PIN FROM THE MUSEUM TO YOUR TA with your typed non plagiarized answers to the questions in the lab manual
- If you need a ticket see me after class

LAB SECTIONS

Day	Section	Time	Room	TA
Wed	4	1:00PM-3:59PM	M-1-114	Sarah
Wed	2	5:30PM-8:29PM	M-1-114	Jon
Thurs	3	9:30AM-12:29PM	M-1-114	Jon
Thurs	6	9:30AM-12:29PM	M-1-116	Scott
Thurs	1	2:00PM-5:00PM	M-1-114	Sarah
Thurs	7	2:00PM-5:00PM	M-1-116	Scott

TA's will be on bench outside Glass flowers | Continue of the picture of the pic

Great questions from after class

- How do you read phylogenetic trees?
- Were humans once chimps?
- How do vestigial characters evolve? (we will get to this later)

Evolution in populations

- Remember evolution takes place at the population level
- Variation in populations based on inherited traits can result in changes in frequency of traits over time - evolution

Variation in genetic traits

Discrete traits- based on one gene with more than one allele: examples (remember basic Mendelian genetics)
In humans: Freckles, ABO Blood type
Quantitative traits- phenotype based on multiple genes- in humans: skin color, height, eye color

What causes genetic variation ?

- Mutation- changes in the nucleotide base in a DNA sequence, deletions, or insertions
- · Gene duplications and deletions
- Chromosomal rearrangements
- Recombination
- Sexual reproduction (meiosis)

Review of genetics terms

- Gene: controls a character
- Allele: alternative form of a gene (controls trait)
- Genotype: the alleles an individual has for a particular trait (RR, Rr, rr)
- Phenotype: Observable feature of organism

Review of Mendelian genetics

 Have a population of red flowers, white flowers and pink flowers. The gene for flower color is controlled by one gene with 2 alleles. What are the genotypes for these phenotypes?

Population level

- In 111 you looked at Mendelian inheritance in individual mating pairs now we will look at genetics at the population level
- <u>Population</u>: a group of interacting and interbreeding individuals in one area

Calculating allele frequencies

See notes

Hardy-Weinburg model

 Using allele frequencies you can predict the genotype frequency and phenotype frequency of the next generation. With the following equation:

$$p^2 + 2pq + q^2 = 1$$

Very simplified model with some assumptions

Assumptions of Hardy-Weinberg model

- 1. Very large population size
- 2. No migration in or out
- 3. No mutation
- 4. Random mating
- 5. No natural selection (equal fitness) Fitness= reproductive sucess

Random mating

 Egg and sperm drawn randomly from population: chance of having R or r depends on <u>allele frequencies</u>

Can use HWE to predict carriers for alleles in humans

Human genetics: attached vs. free
 earlobes
 Would we expect it to be
 in HWE

1. Large population size

2. No mutation (low rate)

3. no Migration?

4. random mating —

5. no selection

© 2011 Pearson Education, Inc.

2011 Pearson Education, Inc

Ear lobe example cont.

•	<u>allelle</u>	contribution to phenotype	<u>frequency</u>
•	E	unattached earlobe (dominant)	р
•	е	attached earlobe (recessive)	q

•	<u>Genotype</u>	<u>Phenotype</u>
•	EE	unattached
•	Ee	unattached
•	ee	attached

- Q: How many people in class are carriers for the attached allele?
- Assume that this trait is at HWE.

applying HWE

- Is a population at HWE (not evolving)
- 1. calculate allele frequencies of a trait in a population of a species
- 2. predict genotype frequencies if population were at HWE
- 3. compare predicted and actual
 - see examples from class