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Abstract 
Many hypotheses in the field of phylogenetic comparative biology involve specific changes in the rate or process of trait evolution. This is partic-
ularly true of approaches designed to connect macroevolutionary pattern to microevolutionary process. We present a method to test whether 
the rate of evolution of a discrete character has changed in one or more clades, lineages, or time periods. This method differs from other related 
approaches (such as the “covarion” model) in that the “regimes” in which the rate or process is postulated to have changed are specified a 
priori by the user, rather than inferred from the data. Similarly, it differs from methods designed to model a correlation between two binary 
traits in that the regimes mapped onto the tree are fixed. We apply our method to investigate the rate of dewlap colour and/or caudal vertebra 
number evolution in Caribbean and mainland clades of the diverse lizard genus Anolis. We find little evidence to support any difference in the 
evolutionary process between mainland and island evolution for either character. We also examine the statistical properties of the method more 
generally and show that it has acceptable type I error, parameter estimation, and power. Finally, we discuss some general issues of frequentist 
hypothesis testing and model adequacy, as well as the relationship of our method to existing models of heterogeneity in the rate of discrete 
character evolution on phylogenies.
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Introduction
Over recent decades, phylogenetic comparative methods have 
grown steadily in their importance and now assume a rela-
tively central role in evolutionary research (Harmon, 2018; 
Harvey & Pagel 1991; Revell & Harmon, 2022). The major-
ity of phylogenetic comparative methods take a phylogenetic 
tree and phenotypic trait data for the constituent species of 
that tree with the aim of combining the two to better under-
stand trait evolution over the period of history represented by 
the phylogeny (Nunn, 2011; Revell & Harmon, 2022). These 
inferences might include, for instance, that two or more phe-
notypic attributes of a clade tend to evolve in a correlated 
fashion, or that the phenotypic characteristics of an ancestral 
species were most likely to have been more similar to one 
of its extant descendants than to others (Revell & Harmon, 
2022). In the former case, we might use the phylogenetically 
independent contrasts algorithm of Felsenstein (1985) or 
Grafen’s (1987) phylogenetic regression; whereas in the latter 
we could employ maximum likelihood or Bayesian ancestral 
state estimation (e.g., Pagel et al., 2004; Revell, 2024; Revell 
& Harmon, 2022; Schluter et al., 1997).

Lately, there has been a substantial increase in the diversity 
of phylogenetic comparative methods that are designed to 
capture complexity and heterogeneity in the process of evolu-
tionary change among lineages or through time (e.g., Beaulieu 

et al., 2013; Boucher & Démery, 2016; Boucher et al., 2018; 
Butler & King, 2004; Felsenstein, 2005, 2012; O’Meara et 
al., 2006; Revell, 2014, 2024; Revell & Collar, 2009; Revell 
& Harmon, 2022). A subset of these new approaches were 
developed with an explicit underlying relationship to the 
microevolutionary process within species (e.g., Felsenstein, 
2005; Revell & Harmon, 2008; Uyeda & Harmon, 2014). 
For example, Hohenlohe and Arnold (2008) described a new 
approach for testing hypotheses about lineage or species phe-
notypic diversification using the quantitative genetic additive 
variance-covariance matrix (the G-matrix; also see Revell & 
Harmon, 2008). Around the same time, Felsenstein (2005, 
2012; also see Revell, 2014) presented a model for studying 
discrete character evolution, as well as the evolutionary cor-
relation between discrete and continuous traits, that is based 
on Wright’s (1934) microevolutionary quantitative genetic 
threshold model. Most recently, Machado et al. (2023) devel-
oped a conceptual and methodological framework that com-
bines comparative methods and microevolutionary process 
models to explicitly contrast hypotheses based on microevo-
lution (in which the phenotypic divergence among species is 
predicted in terms of evolutionary genetics and developmental 
ontogeny), with competing non-microevolutionary scenarios.

Apart from this vital work to directly link micro- and 
macroevolution via comparative methods, other more 
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phenomenological approaches and models have also enabled 
a better understanding of underlying evolutionary pro-
cesses from macroevolutionary data. For example, Revell 
and Harmon (2022) presented a polymorphic trait evolu-
tion model for discrete characters in which the polymorphic 
condition is intermediate between the two (or more) corre-
sponding monomorphic states. Even though this model was 
not explicitly designed to capture the population genetic phe-
nomenon of allelic polymorphism and fixation, it (in many 
ways) conceptually matches this microevolutionary process. 
Likewise, Boucher and Démery (2016) described a new model 
for quantitative trait evolution under stochastic diffusion (i.e., 
Brownian motion) with hard, reflective bounds. Although 
this model is not linked to an explicit underlying microevo-
lutionary process, it may nonetheless better approximate the 
microevolutionary phenomenon of hard developmental con-
straints than do other existing “constraint” models, such as 
the Ornstein–Uhlenbeck model of Hansen (1997; Butler & 
King, 2004).

An important attribute of many of these innovations in phy-
logenetic comparative biology is that they permit heterogene-
ity in the evolutionary process from edge to edge or clade to 
clade of the tree (Beaulieu et al., 2013; Butler & King, 2004; 
O’Meara et al., 2006; Revell & Collar, 2009). Some of the 
simplest (where simplicity is defined in terms of the number 
of parameters to be estimated) of these heterogeneous process 
models in phylogenetic comparative biology, such as the ‘early- 
burst’ model (also known as the ACDC model; Blomberg et al., 
2003), allow the evolutionary rate to change as a continuous 
function of time since the root of the phylogeny. Other more 
sophisticated approaches (e.g., Rabosky, 2014) permit the rate 
of evolution to vary continuously among lineages, but not 
necessarily as a function of elapsed time since the global root 
(also see Martin et al., 2023; Revell, 2021; Revell & Harmon, 
in review). Others still model heterogeneity in the evolution-
ary rate or process via discrete regime shifts, but in which the 
probability that any lineage is in any regime is either inferred 
explicitly from the data or integrated over during the analysis 
(e.g., Beaulieu et al., 2013; Mahler et al., 2013; Marazzi et al., 
2012; Revell et al., 2012; Uyeda & Harmon, 2014).

Finally, an important class of approach involves the explicit 
a priori specification by the user of the different regimes that 
are hypothesized to evolve heterogeneously (e.g., Butler & 
King, 2004; O’Meara et al., 2006; Revell & Collar, 2009; 
Revell et al., 2022). In this case, the idea is fairly straight-
forward. The investigator first begins by fixing or “painting” 
a set of regimes on the tree based on a biological hypothe-
sis for how evolution may have proceeded in their group of 
interest. These regimes could correspond to clades, time peri-
ods, individual branches of the phylogeny, or the postulated 
history of a discrete character mapped onto the nodes and 
branches of the phylogeny. One then proceeds to fit a model 
in which the process of evolution, or the parameter values 
that describe evolution via this process, is permitted to differ 
between regimes (Revell, 2013; Revell & Harmon, 2022). For 
a number of years, this type of approach has been quite pop-
ular among comparative biologists with numerous models 
and methods having been developed to investigate heteroge-
neity in the evolutionary process of continuously valued char-
acter traits across the branches or clades of the phylogeny 
(e.g., Beaulieu et al., 2012; Butler & King, 2004; Caetano & 
Harmon, 2019; O’Meara et al., 2006; Revell & Collar, 2009; 
Revell et al., 2022; Thomas et al., 2006).

Although discretely valued character traits are often stud-
ied in phylogenetic comparative research, to our surprise 
no precisely comparable set of methodologies had yet been 
developed for discrete characters. Perhaps the most similar 
approach is one denominated the codon “branch model” 
by Yang (1998; Yang & Nielsen, 1998, 2002). According to 
this model, different pre-specified edges of an independently 
estimated phylogeny are permitted to evolve with different 
nonsynonymous/synonymous (dN/dS) nucleotide substitution 
rate ratios. This scenario could then be compared to a simpler 
model in which dN/dS ratio does not vary among the edges 
and nodes of the phylogeny. To our knowledge, however, this 
model has never been extended beyond its original intent as 
a test for positive selection on gene sequences (Yang, 1998).

That being said, several related approaches have been pro-
posed for discrete phenotypic traits and are in wide use. For 
instance, Pagel (1994) presented a method in which the rate 
of one binary trait is permitted to vary as a function of the 
state of a second (and, possibly, vice versa). Since this model 
will fit well when two different discrete characters have a dis-
proportionate tendency to evolve towards certain trait com-
binations, the model is often interpreted as one that can be 
used to measure the correlated evolution of discrete charac-
ters (but see Maddison & Fitzjohn, 2015; Revell & Harmon, 
2022). Later, Tuffley and Steel (1997) described a model 
for molecular evolution which they dubbed the “covarion 
model.” According to the covarion model, a discrete charac-
ter evolves via a process with two hidden (that is, unobserved 
and unknown a priori) rate categories: either “on” (in which 
it can change state) or “off” (in which it cannot; Penny et al., 
2001; Tuffley & Steel, 1997). This was extended by Galtier 
(2001) to permit any number of hidden-rate categories and 
subsequently generalized and applied to phylogenetic com-
parative analysis by Beaulieu et al. (2013; also see Marazzi 
et al., 2012). All of these latter methods suppose that the rate 
or process of one discrete trait varies among the edges and 
nodes of the phylogeny either as a function of the observed 
(e.g., Pagel, 1994) or unobserved state of a second discretely 
valued character (e.g., Beaulieu et al., 2013; Marazzi et al., 
2012; Penny et al., 2001).

Herein, we imagine a scenario in which the process of evo-
lution for a discrete trait varies among a series of a priori 
postulated regimes. These could be clades of the phylogeny, 
geological or historical time periods, specific edges in which 
an increase or decrease in rate is hypothesized, or the known 
(rather than reconstructed) history of a second discrete char-
acter trait. Although this is not a model with a direct math-
ematical connection to an underlying theoretical model of 
microevolution, in many cases, our hypothesized regimes 
might derive from microevolutionary theory. For instance, we 
might hypothesize a shift in the evolutionary process due to a 
change in genetic variance, the population size, or the origin 
of a new ecological or developmental constraint, among other 
factors.

Note that this approach should not be taken as an alter-
native to the aforementioned methods which either seek to 
identify heterogeneity in the evolutionary process for one 
character due to an unobserved factor or trait; or integrate 
over uncertainty in the history of an observed discrete char-
acter that affects the rate or evolutionary process of a sec-
ond. Instead, the method of this study should be employed 
to investigate scenarios in which a particular set of regimes 
are hypothesized a priori (on biologically justifiable grounds), 



Journal of Evolutionary Biology, 2024, Vol. 37, No. 12 1593

at which point our model can be fit and compared to, for 
instance, a simpler scenario of homogeneous evolutionary 
rates through time, or perhaps to an alternative hypothesis 
for rate heterogeneity on the phylogeny (such as a hidden- 
rates model [HRM], as we will discuss below; Beaulieu et al., 
2013).

After we describe our new approach to analyzing the evolu-
tion of a discretely valued character on the tree, we will pro-
ceed to present some relatively simple simulations examining 
its general statistical performance in terms of type I error, 
parameter estimation, and power. We will then use the method 
to test specific, a priori hypotheses about character evolution 
for two different discrete character traits in the neotropical 
lizard genus, Anolis. First, we will test the hypothesis that the 
rate or process of dominant dewlap colour evolution differs 
between island and continental Anolis lizards, premised on a 
theory that greater syntopy (mainland) or higher population 
densities (Caribbean) could affect the evolutionary tempo of 
this important mate recognition trait. Second, we will test the 
hypothesis that the rate or process of caudal vertebra number 
evolution is higher in the Caribbean compared to continental 
Anolis, theorizing that this might arise from stronger diversi-
fying ecological selection (due to the more diverse specialized 
ecologies of the insular Anolis; e.g., Losos, 2009) in island 
compared to mainland lizards.

Model, methods, and results
The model
Like nearly all modern methods for studying the evolution 
of discretely valued character states on the phylogeny (but 
see Felsenstein, 2005, 2012; Revell, 2014), the model of this 
study is a flavour of the Mk model of Lewis (2001). The Mk 
model is so called because it describes a continuous-time  
discrete-state Markov chain with a total of k possible states. 
(Thus an Mk model with two states is sometimes called an 
M2 model; a model with three states an M3 model; and so 
on.) Under this model a set of non-negative real numbers (qi,j
) gives the instantaneous transition rates between states i and 
j for all i �= j.

In the simplest case, we could imagine an M2 process in 
which q0,1 = q1,0: that is to say, the rates of transition from 
state 0 to 1 and from state 1 to 0 are equal. In this scenario, 
the probability of beginning in state 0 and ending in state 1 
after time t can be written as:

P0,1 (t) =
1
2
− 1

2
e−2q0,1t

(Lewis, 2001). This probability integrates over all the ways 
in which a time period of length t can begin in state 0 and 
change to state 1: that is, by changing state once, 0 → 1;
by changing state, reversing back, and then changing again 
(0 → 1 → 0 → 1); and so on (Lewis, 2001). For conditions
in which the probability of multiple changes during time t is 
very small (e.g., low q0,1, small t, or q1,0 = 0), this expression 
will converge on the simple integral of an exponential distri-
bution with shape parameter q0,1 from 0 → t, as in this case,
we are merely computing the probability that a rare event has 
occurred after time t which should have an exponential prob-
ability density if the rare event occurs randomly at a constant 
rate.

Obviously, the probability of starting and ending in the 
same state 0 is merely one minus our previous expression, or:

P0,0 (t) =
1
2
+

1
2
e−2q0,1t

(Lewis, 2001). More generally, in a k-state process in which 
transition rates need not be equal nor symmetrical among 
states, the matrix of transition probabilities between states 
can be obtained by exponentiating a transition matrix, Q, 
multiplied by the elapsed time, t, in which each i, jth element 
of Q (for i �= j) contains the instantaneous transition rate 
between i and j, and in which the diagonal elements are set to 
−
∑k

j=1, i�=j qi,j, such that each row-sum of Q is equal to zero. 
In other words:

P = exp (Qt)

Here, exp (x) denotes the matrix exponential of × and P is a 
matrix containing the probabilities of changing (or not, on 
the diagonal of the matrix) between any pair of states. It is 
straightforward to then proceed and compute the likelihood 
of any particular value of Q, given the data at the tips of the 
phylogeny and our set of edge lengths, which can be done 
efficiently using the pruning algorithm of Felsenstein (1973, 
1981). For any tree and vector of observations for a discrete 
character at the tips of the tree, the value of Q that maxi-
mizes this likelihood would be our maximum likelihood esti-
mate (MLE) of the transition matrix Q. (Note that the model 
called the Mk model by Lewis (2001) explicitly assumes that 
all transitions between states occur at the same rate. Although 
the more general model in which transitions between differ-
ent pairs of states are permitted to occur at different rates is 
now often also called the “Mk model”—in some places, it has 
been more precisely described as the “extended” Mk model; 
e.g., Harmon, 2018; Revell & Harmon, 2022. Herein, we will
follow the more typical contemporary convention and refer
to the general, k-state Markov model as the Mk model.)

Elaborating on this model but slightly, we imagine two 
different transition processes, a and b, operating simultane-
ously in different parts of the tree in which (for simplicity) 
qa0,1 = qa1,0 and qb0,1 = qb1,0, but qa0,1 �= qb0,1. In this case, for a
time interval t consisting first of time in condition a, ta, fol-
lowed by time in condition b, tb, the probability of starting 
in state 0 and ending in state 1 after time t = ta + tb will be 
equal to the probability of starting in state 0 and ending time 
ta in state 1, then beginning and ending time tb in state 1, plus 
the probability of starting and ending time ta in state 0, times 
the probability of starting time interval tb in state 0 and end-
ing it in state 1. Simply following our equations from earlier, 
this can be written as:

P0,1 (t) =
Å
1
2
− 1

2
e−2qata

ãÅ
1
2
+

1
2
e−2qbtb

ã

+

Å
1
2
+

1
2
e−2qata

ãÅ
1
2
− 1

2
e−2qbtb

ã

in which we have substituted qa for qa0,1 = qa1,0 and qb for
qb0,1 = qb1,0. This calculation is illustrated for a simplified “phy-
logeny” with two taxa in Figure 1, in which the likelihood that 
is computed (at the root of the tree) is equal to probability of 
the observed data at the tips (taxon A in state “0” and taxon 
B in state “1”), given the phylogeny and the model of evo-
lution in which a regime shift (from transition rate qa to qb)  
has been postulated along the edge leading to taxon A.

More generally, for arbitrarily different transition matri-
ces Qa and Qb, the matrix of transition probabilities along 
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a given edge is divided into time intervals ta and tb can be 
written as:

P = exp (Qata) exp (Qbtb) .

To see how this might be so, let’s once again revert back to 
our binary character in which we said:

P = exp (Qt) =

ñ
P0,0 (t) P0,1 (t)
P1,0 (t) P1,1 (t)

ô
.

Thus for two successive time periods (ta and tb) on an edge, 
we have:

P =

ñ
P0,0 (ta) P0,1 (ta)
P1,0 (ta) P1,1 (ta)

ô ñ
P0,0 (tb) P0,1 (tb )
P1,0 (tb) P1,1 (tb )

ô

and consequently:

P =

ï
P0,0(ta)P0,0(tb) + P0,1(ta)P1,0(tb) P0,0(ta)P0,1(tb) + P0,1(ta)P1,1(tb)
P1,0(ta)P0,0(tb) + P1,1(ta)P1,0(tb) P1,0(ta)P0,1(tb) + P1,1(ta)P1,1(tb)

ò

(via normal matrix multiplication), which clearly enumerates 
all the ways of getting between the two character states over 
the time intervals ta and tb. For instance, P1,2 (the element of P 
in the first row and second column) contains the probability 
of starting t in state 0 and ending in state 1, which is equal 
to the sum of the probability of starting and ending segment 
a of length ta in state 0, but then changing from 0 to 1 along 
segment b of length tb, and the probability of starting segment 
a in state 0 and ending state 1, and then not changing state 
along segment b. Note that the calculation of the probability 
P(i|i) integrates over the possibility of not changing at all and
the possibility of one or more changes to other states, fol-
lowed by a reversal to i. Naturally, this can be generalized to 
any number of character states or rate regimes.

As before, it is straightforward to compute the likelihood for 
any set of values in Qa and Qb, using the pruning algorithm of 
Felsenstein (1973, 1981), and if we identify the values of Qa and 
Qb (and so on, for more than two regimes) that maximize the 
likelihood, we have found our MLEs of the two or various tran-
sition matrices of our model. Lastly, although we have included 
the detailed explanation above on a two-taxon tree with two 
mapped regimes useful to conceptualize the calculation of the 
likelihood, in practice, it is much more straightforward to split 
any edge with a regime shift into two or more edges with one or 
more unbranching nodes. Then one can simply apply the prun-
ing algorithm of Felsenstein (1981) to compute the likelihood, 
but in which each edge is allowed to have a different value for 
the matrix of transition rates between states, Q, depending on 
its (single) mapped regime. Indeed, this is precisely how these 
calculations have been implemented in software.

Notes on implementation
All the models and methods of this study have been imple-
mented for the R statistical computing environment (R Core 
Team, 2024), and all simulations and analyses were con-
ducted in R. The statistical method described herein has been 
implemented in the function fitmultiMk of the phytools R 
package (Revell, 2012, 2024). phytools itself in turn depends 
on the important R phylogenetics package ape (Paradis & 
Schliep, 2019; Paradis et al., 2004; Popescu et al., 2012), as 
well as on a number of other R packages (Azzalini & Genz, 
2022; Becker et al., 2022; Chasalow, 2012; Gerber & Furrer, 
2019; Gilbert & Varadhan 2016; Lemon, 2006; Ligges & 
Mächler, 2003; Maechler et al., 2023; Microsoft Corp. and 
Weston, 2022a, 2022b; Mullen et al., 2011; Pinheiro et al., 
2023; Plummer et al., 2006; Qiu & Joe, 2023; Schliep, 2011; 
Venables & Ripley, 2002). Finally, we used the packages 
future.apply (Bengtsson, 2021), geiger (Pennell et al., 2014), 
and lmtest (Zeleis & Hothorn, 2002), in various analyses and 
simulations of this study.

Simulation tests of the method and results
To examine the type I error rate of the method, we first simu-
lated sets of 200 pure-birth phylogenies, each containing either 
N = 25, 50, 100, 200, 400, or 800 taxa, all of which were 
rescaled to have a total depth of 1.0 unit. This total depth is 
arbitrary, but we chose to keep it constant across simulations 
so that (for instance) our 800 taxon tree would not have a 
much greater average root-to-tip distance than, say, our 25 or 
50 taxon stochastic phylogenies. We then randomly selected 
two non-nested clades of each tree with the intent of assigning 
the tips and edges of these two clades into the same second 
derived regime, to be then compared against the basal regime 
on the rest of the three. (Though we appreciate that the term 
“basal” is somewhat controversial when applied to extant 
taxa, here we use it specifically to refer to a regime mapped to 
the genuine root of the tree, so we think it is appropriate.) We 
thus selected the two clades such that: (1) each selected clade 
contained at least two taxa; and (2) collectively the two clades 
comprised neither less than 25% nor more than 75% of the 
tips of the tree. We simulated a constant rate of character evo-
lution on the tree in which q0,1 = q1,0 = 0.5, corresponding to 
an expected number of changes from the root to any tip of 0.5, 
regardless of the number of taxa in the tree. (Obviously, larger 
trees nonetheless possessed more changes on average, because 
they have more total edge length for a given depth.) We then 
proceeded to fit the heterogeneous rate model presented in this 

Figure 1. Illustration of the calculation of the probability of observing the 
data pattern [0, 1] for taxa A and B, respectively, on a two-taxon tree with 
a rate shift hypothesized a priori along one of the two edges of the tree. 
For a given set of values for the transition parameters of our model, this 
is equivalent to the likelihood at the root of the phylogeny. For purposes 
of simplifying the calculation, we assume that for a given regime (a or 
b) the rate of transition (q) between binary states 0 and 1 is the same
as between states 1 and 0 (that is to say, that qa = qa

0,1 = qa
1,0 and

qb = qb
0,1 = qb

1,0); and that π0 and π1 gives the prior probability of 0 and 1 
at the root, respectively.
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article along with a standard Mk (i.e., M2) model with sym-
metrical transition rates between states. We compared the like-
lihoods of the two models using a likelihood-ratio test with one 
degree of freedom, for the one additional parameter estimated 
in the multi-regime model. The distribution of p-values for 
each simulation condition is given in Supplementary Appendix 
Figure S1; whereas Supplementary Appendix Table S1 shows 
the measured type I error rates for each size of tree. On aver-
age, we found that type I error was just very slightly above its 
nominal level (average type I error = 0.054). Furthermore, in 
no simulation conditions was type I error significantly greater 
than 0.05 according to a one-tailed binomial test, with only a 
relatively weak tendency for type I error to be higher in smaller 
compared to larger phylogenetic trees (Supplementary Figure 
S1; Supplementary Table S1).

We also undertook a set of simulations to examine the 
power and parameter estimation of the method. For this anal-
ysis, we used only the set of 200 simulated 100-taxon trees 
from the type I error analysis. On these trees, we simulated 
two different rate regimes for the binary character, in which 
the regime was determined by our a priori mapping and 
where qa = qa0,1 = qa1,0 = 0.5, whereas qb = qb0,1 = qb1,0 = 0.5
, 1, 2, 4, and 8. As one might expect, the power to reject the 
null increased with the difference in rate between regimes 
(Supplementary Table S2). The median estimated value of the 
transition rates was largely unbiased across all differences in 
rate (Supplementary Table S2; Figure 2); however, the mean 
estimated value of qb was upwardly biased for higher gener-
ating values of qb, evidently due to a small fraction of simula-
tions in which qb was badly overestimated (Figure 2).

Empirical example
In addition to these simulations, we also fit our model to 
two different empirical cases. In both of these, we examined 
the rate of evolution of a discrete character in mainland vs. 
island lineages of lizards in the genus Anolis, known as anoles 
(Losos, 2009). Since the number of transitions from main-
land to island in anoles (and vice versa) is relatively few, we 
treated these for our purposes as having occurred at known 
locations on our phylogeny, which we obtained from Gamble 
et al. (2014). In particular, we assumed that the global ances-
tral node of all anoles was present on the continental main-
land, that occupancy of the Caribbean islands from mainland 
lineages (or vice versa) occurred via colonization, and then 
we proceeded to place colonization events precisely half-
way along the edge leading to each clade in which descen-
dants were present in the islands. We also reconstructed one 
island-to-mainland colonization event and within this clade 
a further secondary colonization of islands. (Though this lat-
termost colonization is not recovered in several other phy-
logenetic analyses of anoles, e.g., Alföldi et al., 2011; Poe et 
al., 2017, we do not expect that this detail will affect our 
analyses in a significant way.) Our phylogeny thus includes a 
total of 120 islands and 64 mainland taxa, with four changes 
between mainland and island or the reverse. The mainland/
island history that we assumed for the purposes of this analy-
sis is mapped onto the tree in Figure 3.

Using this mainland/island history as a basis for all subse-
quent inferences, we next analyzed dewlap colour evolution. 
Data for this analysis were originally obtained for a study 
on dewlap size evolution in anoles (Ingram et al., 2016). 
The dewlap is an extensible gular fan used by anoles (and 
some other lizards) for both intra- and interspecific displays. 

Importantly, the colour of the dewlap has been shown to be 
a critical mate recognition cue in many species (Losos, 2009). 
Our logic in comparing the rate of anole dewlap colour evo-
lution between island and continental faunas was the follow-
ing. Although little studied, at a coarse scale mainland and 
island anole faunas differ in that mainland communities sup-
port higher syntopic species richness but lower average abun-
dances compared to island communities (Anderson & Poe, 
2019; Andrews, 1979). The ultimate causes of dewlap colour 
diversity remain poorly known (Losos, 2009; Nicholson et 
al., 2007), but if either sexual selection at high densities or 
selection for species recognition at high diversities is respon-
sible for phylogenetic transitions in dewlap colour, we might 
expect mainland and island anole lineages to exhibit differ-
ent rates of dewlap colour evolution. Since we do not know 
whether syntopy or density is liable to create more pressure 
on anole dewlap colours to diversify one from the other, we 
merely hypothesize that the rate of evolution of dewlap colour 
should differ between mainland and island faunas, rather 
than pre- supposing that island lineages will evolve at a higher 
rate than their continental counterparts or the converse.

Dewlaps come in many colours and colour combinations, 
but to keep the discrete character models tractable, we coded 
dewlap colour by placing the dominant (by dewlap surface 
area) colour of each species’ dewlap as being subjectively 
closest to one of the following six states: black (anoles with 
black, blue, or purple dewlaps); orange (orange or brown 
dewlaps); pink (pink and peach dewlapped anoles); red; white 
(white and grey dewlaps); or, finally, yellow (yellow and green 
dewlaps; Figure 3). Obviously, considerable nuance will be 
lost first in reducing the often complex dewlap colouration 
to a single dominant colour for each species, and further still 
by reducing the genuine interspecific variation in dominant 
colour to our minimal, six-state set. We would not, however, 
expect this simplification of our dataset to lead to an elevated 
type I error in the method. (To the contrary, we suspect that 
the opposite is more likely to be true.)

We then proceeded to fit a series of six models to the data 
and tree. These six models consisted of an evolutionary pro-
cess in which: transitions occurred at the same rate between 
all pairs of states (ER); transitions occurred at the same back-
ward and forward rate between each pair of states, but could 
occur at different rates between different state pairs (SYM); 
and transitions occurred at different rates between each pair 
of states (ARD). We fit each of these models either allowing 
for different rates between mainland and island lineages (-M) 
or forcing them to have the same rates of change between 
character states (-S), thus resulting in six models of varying 
complexity in all (ER-S, ER-M, SYM-S, SYM-M, ARD-S, and 
ARD-M). We assumed a flat prior probability distribution at 
the root for all models. Results from this analysis are given in 
Table 1. In general, although in the best-fitting multi-rate mod-
els (SYM-M) the average transition rate between states was 
higher on islands than in mainland lineages—penalizing for 
the number of parameters to be estimated, the best-supported 
model was clearly a model in which both mainland and island 
fauna dewlap dominant colour evolved under the same set of 
rates of transition between states (SYM-S; Table 1).

In addition to this character, we also analyzed island 
and mainland caudal (i.e., tail) vertebra number evolution. 
These data were obtained by simply counting the number 
of vertebrae from the pelvic girdle to the tip of the tail in 
a specimen in which the tail was previously deemed to be 

http://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voae119#supplementary-data
http://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voae119#supplementary-data
http://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voae119#supplementary-data
http://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voae119#supplementary-data
http://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voae119#supplementary-data
http://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voae119#supplementary-data
http://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voae119#supplementary-data
http://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voae119#supplementary-data
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completely intact (e.g., Figure 4). Our logic in comparing 
the rate of anole caudal vertebra evolution between island 
and mainland lineages is simply that conventional wisdom 
suggests that Caribbean anoles exhibit greater arboreal 
microhabitat diversification and specialization than do 
their mainland congeners (Losos, 2009; whilst acknowl-
edging that mainland anoles are also ecologically and mor-
phologically diverse, e.g., Pinto et al., 2008). The tail is an 
appendage that can play an important role in locomotion, 
particularly in an arboreal setting. Consequently, it seemed 
reasonable to imagine that it might be under stronger diver-
gent selection in the Caribbean, where anoles may fill a 
wider array of arboreal and semi- arboreal ecological roles 
than in continental clades. As such, and in contrast to our 
non-directional hypothesis for dewlap colour evolution, we 
hypothesized that the island Anolis lizard caudal vertebra 

number should evolve at a higher rate than for mainland 
lineages.

Given that the number of caudal vertebrae varies over 
quite a broad range (from 34 to 55 in these data), one might 
intuitively assume that the number of parameters to estimate 
in this model would be impossibly large. In fact, if we make 
some relatively reasonable simplifying assumptions (keep-
ing in mind that all models are, by definition, intended to be 
simplifications of reality) the dimensionality of the problem 
can be quite manageable, even though the state-space is big. 
Specifically, we decided to treat the acquisition and loss of 
caudal vertebrae as an ordered process—in which gain and 
loss were free to proceed with different tempos, but where 
changes in the same direction between any pair of adja-
cent states should occur with the same rate (Supplementary 
Appendix Figure S2). Once again, though we found that the 
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estimated rate of character evolution in the best-fitting model 
was higher in islands than in mainland anole lineages, the 
best-supported model (accounting for parameterization) was, 
as before, the ordered, single-rate model (Table 2).

In addition to comparing our multi-rate models to stan-
dard, homogeneous-rate Mk models, as detailed above, for 
illustrative purposes only we also fit a total of three additional 
two-regime HRMs (Beaulieu et al., 2013; ER, SYM, ARD, but 
with hidden rates) to our dewlap dominant colour data, and a 
single additional HRM (ordered, but with hidden rates) to our 
caudal vertebra number dataset. We argue in the Discussion 
section, below, why it might be important to include HRMs 
in an analysis of regime-based rate heterogeneity in cases in 

which the null hypothesis of rate homogeneity is rejected 
(although perhaps less so when it is not, as in this study). In 
addition to standard HRMs, it is also theoretically (and prac-
tically, in some software) possible to fit a model with both 
mapped regimes and a hidden character. We do not explore 
this category of model here, but it might be the subject of 
future study.

Model likelihoods, parameter complexity, Akaike infor-
mation criterion (AIC), and model weights for all models 
are given in Supplementary Appendix Tables S3 and S4. The 
inclusion of these additional HRMs did not substantively 
alter our main result in that we still did not find evidence of 
rate heterogeneity in dominant dewlap colour nor in caudal 
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vertebra number linked to island or mainland geographic 
regimes. For dominant dewlap colour, the best- supported 
model (by AIC and model weight) continued to be the sym-
metric (SYM) single-regime model (Supplementary Appendix 
Table S3). By contrast, with the addition of HRMs, the 
best-supported model for caudal vertebra number (by the 
same criteria) became the HRM (Supplementary Appendix 
Table S4). An illustration of the structure and parameter 
estimates of this HRM is given by Supplementary Appendix 
Figure S3.

Discussion
In recent decades, phylogenetic comparative methods have 
exploded in popularity within evolutionary research. This 
growth has generally been accompanied by an appreciation 
that models assuming a homogeneous process of evolution 

may be overly simplistic for many phylogenies, particularly 
those that contain many taxa or that span vast periods of 
evolutionary time. A number of methods have been devel-
oped to explicitly model heterogeneity in the rate or process 
of phenotypic evolution on the tree. An important class of 
such method involves the investigator “painting” different a 
priori regimes onto the branches or clades of a phylogeny, and 
then testing the hypothesis that evolutionary change for one 
or more characters differs between different painted regimes 
(Butler & King, 2004). This approach was perhaps best for-
malized by O’Meara et al. (2006) in the context of testing 
hypotheses about changes in the rate of evolution for a con-
tinuous character evolving by Brownian motion on the tree.

Surprisingly, and in spite of the considerable popularity of 
this type of analysis for continuous character data, no pre-
cisely analogous approach has ever been proposed for dis-
cretely valued traits. Herein, we present just such an approach. 
According to the method of this article, and just as in the 
method of O’Meara et al. (2006), the user must propose a pri-
ori a specific hypothesis for where the rate or process of char-
acter evolution is thought to vary on their phylogeny. This 
hypothesis can then be fit using likelihood and compared to 
other hypotheses such as a null hypothesis of constant rates 
of evolution, or other alternative hypotheses about how the 
rate varies among clades or branches of the phylogeny. We 
show that the method, which has been implemented in the 
R package phytools (Revell, 2012), has an acceptable type I 
error when the null is true, as well as reasonable power and 
parameter estimation when it is not (Supplementary Figures 
S1 and S2; Supplementary Tables S1 and S2).

Relationship to other methods
Models in which regime shifts are postulated a priori by the 
user, painted on the tree, and then tested against alternative 
paintings or a null hypothesis of homogeneous evolution, 
have been around for nearly two decades, and are already 
quite popular for the analysis of one or more continuous 
characters on the tree (e.g., Beaulieu et al., 2012; Butler & 
King, 2004; O’Meara et al., 2006; Revell & Collar, 2009). 
We were somewhat surprised to discover that a precise ana-
logue did not exist for discretely valued character traits and 
have tried to fill that void with this contribution. To our 
knowledge, the sole exception is the codon branch model 
of Yang (1998; Yang & Nielsen, 1998, 2002), which, so far 
as we are aware, has never been extended beyond testing 
for positive selection in gene sequences. Other prior meth-
ods have been proposed to explicitly model heterogeneity 
in the rate or process of evolution in discrete characters on 
phylogenetic trees. Perhaps most significantly, Pagel (1994) 
presented a model in which the rate of evolution of one 
binary character depends on the state of a second character, 

Table 1. Mean transition rates, log-likelihoods, number of fitted 
parameters, and AIC for the six fitted models of dewlap dominant colour 
evolution described in the main text. The best-supported model (SYM-S) 
is highlighted in bold text. Also, see Supplementary Appendix Table S3.

Model q̄islands q̄mainland log(L) k AIC

ER-S 0.009 0.009 −308.6 1 619.3

ER-M 0.009 0.009 −308.6 2 621.3

SYM-S 0.073 0.073 −289.8 15 609.6

SYM-M 0.071 0.012 −285.6 30 631.3

ARD-S 0.009 0.009 −282.7 30 625.4

ARD-M 0.013 0.011 −272.6 60 665.3

Figure 4. Digital x-ray image of an anole (Anolis sagrei) showing the 
caudal vertebrae of an intact tail. Image courtesy K. Winchell.

Table 2. Rate of caudal vertebra loss and gain on the mainland [M] and 
islands [I], log-likelihoods, number of fitted parameters, and AIC for the 
two fitted models caudal vertebra number evolution described in the 
main text. As in Table 1, the best-supported model (ordered-single) is 
highlighted in bold text. Also, see Supplementary Appendix Table S4.

Model qloss qgain log(L) k AIC

Ordered single 0.494 0.318 −305.1 2 614.2

Ordered multiple 0.523 [I]
0.373 [M]

0.333 [I]
0.237 [M]

−304.4 4 616.7

http://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voae119#supplementary-data
http://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voae119#supplementary-data
http://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voae119#supplementary-data
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or vice versa; or in which the evolution of both characters is 
interdependent. Since this model will fit well when two char-
acters tend to evolve towards certain character state com-
binations, the method of Pagel (1994) is often interpreted 
as a test for the correlated evolution of two binary traits. 
As shown by Maddison and Fitzjohn (2015; and as is obvi-
ous from the structure of the model), Pagel’s (1994) method 
will also lead to a significant result if a change in value for 
one character is correlated with a change in the rate of evo-
lution for a second (even if the former is unreplicated on 
the tree; Maddison & Fitzjohn, 2015). Our method too will 
be significant if our discrete character changes in its rate 
or process of evolution within a single clade that we have 
specified a priori. However, in our case, this is by design, 
not by accident. Under this circumstance, a significant result 
would merely indicate that the data suggest that our single 
focal subclade evolved by a different process or rate than did 
the taxa of the rest of the phylogeny, and any attribution of 
this finding to a specific biological cause is not implied by 
the result and would be left instead to the interpretation of 
the investigator.

Another very important category of analytical method also 
exists for modelling rate heterogeneity of a discrete character 
trait on the phylogeny. These are models in which the rate of 
evolution of our trait is assumed to be under the influence  
of a second, unobserved, discrete character trait. This class of 
method traces its history to the covarion model of Tuffley and 
Steel (1997), but was adapted to phylogenetic comparative 
analysis as the “hidden-rates model” (HRM) by Beaulieu et 
al. (2013; also see Marazzi et al., 2012). The HRM differs 
from what we have proposed herein in that under the HRM 
we allow our data to tell us where character evolution may 
have changed in rate, rather than hypothesizing the location 
of one or more rate shifts a priori. We will revisit the HRM in 
subsequent discussion, below.

Finally, a completely separate class of model has recently 
been proposed for the phylogenetic comparative analysis of 
discrete character evolution that is based on the threshold 
model from quantitative genetics originally developed by 
Wright (1934; Felsenstein, 2005, 2012). According to the 
threshold model, our observed discrete character is simply 
a manifestation of an underlying, unobserved continuous 
trait (called liability) and one or more thresholds. Under 
this model, whenever liability crosses a threshold, the dis-
crete character changes state. The threshold model can also 
create heterogeneity in the evolutionary process through 
time and among lineages. For instance, lineages near the 
threshold may change state many times, whereas clades far 
from any threshold will tend not to change at all (Revell, 
2014; Revell & Harmon, 2022). Indeed, there are some cir-
cumstances in which evolution under the threshold model 
might be well- approximated by the model of this article. 
For example, if the regimes hypothesized a priori by the 
investigator correspond to parts of the tree in which liabil-
ity is near a threshold (and thus the discrete trait changes 
frequently) or far from any threshold (where the character 
would not be expected to change at all), then the multi- 
regime model will likely provide a good explanation for our 
data. We should make clear, however, that it would not be 
appropriate under any circumstances to paint regimes on 
the tree after having observed the data such that clades with 
many changes are in one “regime” while clades with fewer 
changes are in another.

Notes on the empirical case studies
In addition to presenting this method and exploring its sta-
tistical attributes via simulation, we also applied the method 
to a pair of case studies. In each, we hypothesized that the 
rate of evolution for a discrete character (dominant dewlap 
colour and number of caudal vertebrae) might differ between 
mainland and Caribbean Anolis lizard faunas. Transitions 
between the Central and South American mainland and the 
Caribbean have occurred so few times that they can be rea-
sonably unambiguously reconstructed on the tree of anoles 
(Figure 3). We hypothesized a priori that dominant dewlap 
colour might evolve at different rates in the Caribbean and 
mainland lineages due to average (and opposite) differences in 
diversity and abundance in these island versus mainland envi-
ronments. For example, higher densities of conspecifics might 
favour stronger and more frequent selection acting on dewlap 
colouration to compete for mates. On the other hand, higher 
species richness could favour the evolution of greater dewlap 
diversity to reduce costly heterospecific mating attempts. We 
also hypothesized that caudal vertebra number might evolve 
more rapidly in Caribbean lizards under the assumption that 
Caribbean anoles tend to exhibit more specialized arboreal 
niche use, and thus that the tail might be under stronger diver-
gent selection on the islands due to the different locomotor 
demands imposed by highly specialized arboreal locomotion.

We found relatively little evidence in support of either 
hypothesis; however, from the perspective of methodology, 
perhaps our non-finding should be as much encouraging as it 
is disappointing. Over the past few years, it has become a rel-
atively popular endeavour to identify circumstances in which 
phylogenetic comparative methods can lead us spuriously 
astray due to null-model inadequacy (Maddison & Fitzjohn, 
2015; O’Meara & Beaulieu, 2016; Rabosky & Goldberg, 
2015). Maybe we should feel encouraged by the fact that not 
all simple null hypotheses will be rejected in favour of more 
complicated alternatives, if these alternatives are not, in fact, 
supported by our data. On the other hand, it would be incor-
rect to claim that our results show that no interesting differ-
ences exist in tail or dewlap evolution between mainland and 
Caribbean anoles. To the contrary, our analysis has merely 
demonstrated that a pair of relatively simple a priori hypoth-
eses for rate variation between continental and island anoles 
are not supported when confronted with data.

A brief comment on model adequacy, model 
selection, and type I error
In this article, we have focused on a rate heterogeneous dis-
crete character evolution model conceptually most closely 
akin to the rate or process heterogenous continuous trait 
models described by Butler and King (2004) or O’Meara et al. 
(2006). As alluded to in the prior section, however, both fre-
quentist hypothesis testing and information-theoretic model 
selection (of the type that we illustrated both in our simu-
lation and empirical analyses), using all such methods and 
models, are vulnerable to the inadequacy of the null and alter-
native models of the type made famous (in phylogenetic com-
parative method circles) by Maddison and Fitzjohn (2015; for 
the Pagel, 1994 model of correlated binary trait evolution) 
and Rabosky and Goldberg (2015; for state-dependent diver-
sification models). That is to say, readers eager to apply the 
analysis of this article to their own data should keep in mind 
that, just as for any frequentist hypothesis test, rejection of the 
null does not mean that the alternative is correct—merely that 
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the null model is a poor description of our data. We would 
thus encourage users to include this model among a suite of 
possible scenarios for how their character may have evolved: 
for example, comparing a regime-based hypothesis of rate 
heterogeneity to an HRM (Beaulieu et al., 2013). Indeed, the 
latter has now been implemented in phytools (as well as in the 
excellent corHMM package by Beaulieu et al., 2023; Boyko 
& Beaulieu, 2021) and can be compared directly to the model 
fit of this method using standard statistical machinery of like-
lihoods. In our analysis, we failed to reject the null hypotheses 
in both of our cases, which forces us to conclude that the alter-
natives (different character transition rates between island and 
mainland Anolis) are not well-supported by our data. This 
conclusion would be unaffected by stronger model support 
for a hidden-rate scenario. For illustrative purposes, however, 
we have nonetheless included this analysis in a supplementary 
appendix to this article (see Supplementary Appendix Tables 
S3 and S4; Supplementary Figure S3). Finally, users might also 
contemplate assessing the absolute model adequacy of their 
best-supported model, for example, using posterior predictive 
simulation (e.g., Brown & Thomson, 2018).

Conclusion
Here we have presented a relatively simple extension of the 
familiar Mk model of Lewis (2001), but in which the rate or 
process of discrete trait evolution is permitted to differ among 
branches, clades, or time periods that have been hypothesized 
a priori by the user. We show via simulation that the method 
has reasonable statistical attributes—such as type I error 
not significantly higher than its nominal value and median 
parameter estimates across simulations that are very close to 
their generating values. Finally, we apply the method to two 
different case studies comparing the rate of discrete character 
evolution between the Caribbean and mainland Anolis lizard 
clades.

Supplementary material
Supplementary material is available at Journal of Evolutionary 
Biology online.
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