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Many evolutionary processes can lead to a change in the correlation between continuous characters over time or on different

branches of a phylogenetic tree. Shifts in genetic or functional constraint, in the selective regime, or in some combination thereof

can influence both the evolution of continuous traits and their relation to each other. These changes can often be mapped

on a phylogenetic tree to examine their influence on multivariate phenotypic diversification. We propose a new likelihood

method to fit multiple evolutionary rate matrices (also called evolutionary variance–covariance matrices) to species data for

two or more continuous characters and a phylogeny. The evolutionary rate matrix is a matrix containing the evolutionary rates

for individual characters on its diagonal, and the covariances between characters (of which the evolutionary correlations are a

function) elsewhere. To illustrate our approach, we apply the method to an empirical dataset consisting of two features of feeding

morphology sampled from 28 centrarchid fish species, as well as to data generated via phylogenetic numerical simulations. We

find that the method has appropriate type I error, power, and parameter estimation. The approach presented herein is the first to

allow for the explicit testing of how and when the evolutionary covariances between characters have changed in the history of a

group.
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Biologists are frequently interested in the evolutionary correla-

tions between continuously distributed characters measured from

species related by a phylogenetic tree. These correlations can arise

by a number of causes. Evolutionary correlations can arise by nat-

ural selection. For example, an “evolutionary correlation,” that is,

a correlation between the evolutionary changes in two characters,

can arise if the traits are under correlated selection or evolving

along a ridge in the adaptive landscape (Felsenstein 1988; Arnold

et al. 2001; Martins et al. 2002; Jones et al. 2003), if the traits

are evolving in response to selection toward randomly moving

optima, in which the movement of each optimum is by correlated

Brownian motion (Hansen and Martins 1996; Revell and Harmon

3Both authors contributed equally to this work.

2008), or if the traits are functionally integrated to perform an

ecological task (Walker 2007; Collar et al. 2008). Evolutionary

correlations can also arise by genetic drift. For example, an evolu-

tionary correlation between two characters will arise under drift if

the characters themselves are genetically correlated (Lande 1979;

Arnold et al. 2001; Revell and Harmon 2008).

However, the evolutionary correlation between characters

can also change over time as the adaptive, functional, and genetic

relationships between characters evolve. For example, selective

regimes are expected to change as the phenotype and external

environment change through time and among phylogenetic lin-

eages. In fact, many hypotheses about adaptive phenotypic evo-

lution specifically predict changes in the evolutionary correlation

between traits. These include hypotheses pertaining to the origin
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of a novel trait or function that provides a lineage access to a

new adaptive zone (so-called “key innovations”; Miller 1949;

Galis 2000), the mechanical decoupling of morphological fea-

tures (Liem 1973; Vermeij 1973; Lauder 1981), and shifts in the

selective regime following the invasion of a novel habitat, ecolog-

ical niche, or geographical area (Grant 1972; Schluter 1988).

Additionally, genetic constraints evolve (Roff 1997; Steppan

et al. 2002; Jones et al. 2003; Bégin and Roff 2004) and so must

the tendency toward a particular evolutionary correlation by drift.

Persistent changes in the genetic covariances between characters

can be induced by deterministic factors, such as a change in the

regime of correlational selection (e.g., Jones et al. 2007; Revell

2007), as well as by stochastic forces, such as gene duplication

or a population bottleneck (e.g., Whitlock et al. 2002; Revell and

Harmon 2008). Under drift, a persistent change in the genetic

correlation between characters is also expected to induce a persis-

tent change in their evolutionary correlation (Revell and Harmon

2008).

A classic example of a hypothesis that predicts a change in

the evolutionary correlation between characters is Liem’s (1973)

hypothesis that the origin of a novel pharyngeal jaw form in cichlid

fishes contributed to the exceptional morphological and ecological

diversity found in that group. Liem (1973) hypothesized that the

specialization of the cichlid pharyngeal jaw on food processing

freed the oral jaw to differentiate in different lineages to capture

different kinds of prey. This hypothesis thus predicts that the

evolutionary correlation between pharyngeal and oral jaws will

be weaker in the cichlid radiation, where pharyngeal and oral jaws

are functionally disassociated, than in other lineages of percoid

fishes (Liem 1973; Lauder 1981; Hulsey et al. 2006).

Similarly, the genetic decoupling of serially repeated struc-

tures such as cilia, limbs, and teeth is hypothesized to have led to

new multivariate patterns of morphospace occupation in clades as

diverse as trochophores and rotifers (Strathmann et al. 1972; Ver-

meij 1973), theropod dinosaurs (including birds; Gatesy and Dial

1996; Hunter 1998), and mammals (e.g., Walker 1987; Stock

2001). A hypothesis of complete or partial genetic decoupling

of these serial structures provides the testable prediction that

the evolutionary correlation has decreased in the affected evo-

lutionary lineages where characters have more freedom to evolve

independently.

Although these hypotheses for multivariate phenotypic di-

versification imply a covariance structure among characters that

changes over time, typical approaches for the analysis of continu-

ous characters on a phylogeny ignore this possibility. To analyze

the evolutionary correlation in a phylogenetic context we usually

either: (1) obtain phylogenetically independent contrasts, using

the method of Felsenstein (1985), and then analyze these con-

trasts using parametric regression or correlation techniques; or (2)

use the method of phylogenetic generalized least squares (Grafen

1989; Martins and Hansen 1997; Rohlf 2001) to fit a bivariate

or multiple regression model while controlling for the phyloge-

netic relationships among the taxa in the tree assuming a single,

constant rate of Brownian motion evolution, or some modifica-

tion thereof (Pagel 1999; e.g., Revell and Harrison 2008). The

typical application of these approaches thus generally assumes

both constant evolutionary rates for individual characters and in-

variant correlations between characters across the branches of the

phylogenetic tree.

Existing methods have some flexibility to accommodate het-

erogeneity in the evolutionary rate (Garland and Ives 2000), and

can be used, under some circumstances, to test for differences

in the relationship between characters in different parts of the

tree (Garland et al. 1993; Garland and Ives 2000). These meth-

ods are either based on independent contrasts (Felsenstein 1985),

or on numerical simulation (Garland et al. 1993). Contrasts-based

methods suffer the shortcoming that they require the unambiguous

assignment of all sets of paired sister nodes to an evolutionary rate

category (e.g., Garland and Ives 2000). Simulation-based meth-

ods suffer the shortcoming that they do not allow meaningful

estimation of the parameters of the evolutionary process (e.g., the

phylogenetic analysis of covariance of Garland et al. 1993). Alter-

native methods that use a generalized linear modeling approach

to study the evolutionary rate of a single character (e.g., Martins

1994; Martins and Hansen 1997) could be plausibly adapted to

estimate rate heterogeneity in multiple characters; however, these

methods also rely on the calculation of independent contrasts

(Martins 1994).

Herein, we propose a new method to test for shifts in the

evolutionary correlation by using maximum likelihood to fit mul-

tiple evolutionary rate matrices, also called evolutionary variance–

covariance matrices, to different branches of a phylogenetic tree.

The evolutionary rate matrix contains, on its diagonal, the evo-

lutionary variances or rates for individual characters, and, on its

off-diagonal, the evolutionary covariances (Revell and Harmon

2008). Following Revell and Harmon (2008), we use the term

“evolutionary rate matrix” because the matrix is a multivariate

representation of the evolutionary rate (O’Meara et al. 2006), and

(under Brownian motion) completely describes the distribution

from which evolutionary changes are drawn. As the evolutionary

correlation between two characters is a function of their evolu-

tionary variances and covariance, as far as we know this method

is the first in which a likelihood approach is used to estimate

different evolutionary correlations in different parts of the tree.

The method is based on a Brownian motion model of con-

tinuous character evolution, in which evolutionary changes are

drawn from a multivariate normal distribution with variances and

covariances that are proportional to the time elapsed. Thus, our ap-

proach extends existing methods that also use a Brownian model

to test for changes in the rate of evolution for a single character
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(O’Meara et al. 2006; Thomas et al. 2006) or concerted changes in

all the elements of the multivariate evolutionary rate matrix (Rev-

ell and Harmon 2008). However, our method additionally tests

for nonproportional shifts in the evolutionary variances and co-

variances (of which the evolutionary correlations are a function)

among phylogenetic lineages.

A particular advantage of our approach is that it allows testing

of any specific a priori hypothesis for rate matrix heterogeneity—

regardless of whether that hypothesis consists of monophyletic

sets of taxa (i.e., our approach is “noncensored,” in the sense of

O’Meara et al. 2006). For example, we can use the reconstruction

of a binary or discrete multistate characteristic on the tree to assign

branches and even portions of branches to different rate matrix

categories (O’Meara et al. 2006). These reconstructed traits can

pertain to habitat, biogeographic region, ecology, or any other

plausible influence on the evolutionary rate matrix. With appro-

priate a priori justification, we can go even further and assign

internal branches and parts of branches of the tree to different

rate matrix categories. For example, we might test a hypothesis in

which the evolutionary rate matrix differed between the Pliocene

and Pleistocene, or a hypothesis in which the rate matrix differed

on the branches of the tree before and after a mass extinction event

(O’Meara et al. 2006).

In the present study, we apply the likelihood method to an

empirical dataset and phylogeny from centrarchid fishes to test

an a priori hypothesis that the evolutionary correlation between

two aspects of buccal morphology has changed as a consequence

of a change in trophic habit. We also test the method for type I

error and power using simulated data generated by one and two

rate matrix Brownian motion simulations.

Methods
MATHEMATICAL DETAILS

To fit a single correlation model we used the following procedure.

First, for a tree containing n species, we calculated a single n ×
n matrix, C. C contains, in each element Cij, the height above

the root for the common ancestor of species i and j (Felsenstein

1973; Rohlf 2001). When C is computed from a phylogenetic

tree in which the branches of the tree are proportional to time,

Cij represents the time of shared history between the species.

Unless it can be sensibly justified, phylogenetic trees for which

branch lengths are not expected to be proportional to time (such

as Maximum Parsimony trees) and trees for which branch lengths

are unavailable should be avoided.

By assuming multivariate Brownian motion as our model for

the evolutionary process, we can then compute an analytic solution

for the maximum-likelihood estimate (MLE) of the evolutionary

rate matrix for m traits as follows:

R = (X − 1a′)′C−1(X − 1a′)
n

. (1)

In this equation, R is the MLE of the evolutionary rate matrix,

assuming here that a single rate matrix prevails on all the branches

of the tree, X is an n × m matrix consisting of the observations

for species for m traits in columns, 1 is an n × 1 column vector

of ones, and a is a vector containing the “phylogenetic means,”

which is equivalent to the set of m MLEs for the ancestral states

for each character at the root node of the tree. Equation (1) here

is the same as equation (1) in Revell and Harmon (2008). Like

the ML estimator for the variance, the estimator R will be biased

by the factor (n − 1)/n, which goes to 1.0 as n goes to ∞ (thus

making R asymptotically unbiased). Even for small n, such as

n = 28 in this study, the expected bias of the estimator is slight

(e.g., − 3.6%).

The likelihood of the rate matrix R can be found by evaluating

the following equation for the likelihood (L1):

L1 = exp[−(y − Da′)′(R ⊗ C)−1(y − Da′)/2]√
(2π)nm |R ⊗ C | . (2)

In this equation, which is based on the multivariate normal, y is

a columnarized n·m × 1 vector containing the data from X (such

that y1 through yn are the data from trait 1, yn+1 through y2n are

the data from trait 2, etc.), D is an n·m × m design matrix in

which each entry, Dij, is 1.0 if ( j − 1) · n < i ≤ j · n, and 0.0

otherwise (Felsenstein 1973; Freckleton et al. 2002; Revell and

Harmon 2008), and R ⊗ C is the Kronecker tensor product of

R and C (Revell and Harmon 2008). The computation R ⊗ C,

in which each element of R is multiplied by each element of C,

results in an n·m × n·m matrix which is the expected variance–

covariance matrix for the observations at all tips for all traits,

given the single evolutionary rate matrix R and Brownian motion

as the evolutionary process (Hohenlohe and Arnold 2008; Revell

and Harmon 2008).

Given an a priori alternative hypothesis of two or more evo-

lutionary rate matrices in different parts of the phylogenetic tree,

we can also evaluate the likelihood of this hypothesis. To do so,

we must first construct p C matrices for the p versions of R
that we have a priori hypothesized. These can be computed by

summing the branches of the phylogenetic tree associated with

each hypothesized rate matrix into the matrix Ci for each of

i = 1, 2, . . . , p hypothesized rate matrices. This procedure is il-

lustrated in considerable detail in the appendix to Revell (2008).

For example, for two rate matrices, R1 and R2, we construct two

C matrices, C1 and C2, and then evaluate the following equation

for the likelihood (L2):

L2 = exp[−(y − Da′)′(R1 ⊗ C1 + R2 ⊗ C2)−1(y − Da′)/2]√
(2π)nm | R1 ⊗ C1 + R2 ⊗ C2 | .

(3)

The branches that we add into the matrices C1 and C2 are not

required to be monophyletic, adjacent, or even whole branches.
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If our hypothesis dictates different evolutionary rate matrices for

different parts of a branch, then the portions of branch length can

be added to C1 and C2 as if there is an invisible node bisecting

the branch (Revell 2008).

Because C in equation (2) is equivalent to C1 + C2 in (3), L1

and L2 are equivalent expressions when R1 = R2 (i.e., when there

is no difference in the rate matrix for different parts of the tree),

due to the distributive property of tensor products. Unfortunately,

for the situation in which R1 �= R2, there is no analytic solution

that maximizes the likelihood (L2), so this must be maximized

numerically.

Optimization is somewhat complicated by the fact that R1

and R2 must satisfy the requirements of covariance matrices,

that is, they must be positive semidefinite. The computational

headache that would result from having to test every pair of co-

variance matrices for positive semidefiniteness prior to likelihood

computation can be somewhat alleviated by optimizing the eigen-

structure of R1 and R2 instead of the matrices themselves. This

is because the eigenstructure of a covariance matrix is subject to

several readily definable constraints (e.g., eigenvalues ≥ 0; eigen-

vectors orthogonal).

For equations (1), (2), and (3), the vector of phylogenetic

means, a, can be estimated as follows:

a = (D′V−1D)−1(D′V−1y) (4)

(Hohenlohe and Arnold 2008). In this equation,V = R ⊗ C for

the situation of one hypothesized rate matrix, and V = R1 ⊗ C1 +
R2 ⊗ C2 for the situation in which two rate matrices are assumed

(V = ∑p
i=1 Ri ⊗ Ci in the general case of p rate matrices). For

one trait, as well as for any case in which R1 = kR2 (including

k = 1.0), this equation will yield the same vector a, as the equa-

tion a = (1′C∗−11)−1(1′C∗−1X), for C∗ = C1 + kC2. This is the

equation provided in Revell and Harmon (2008; from Rohlf 2001

and O’Meara et al. 2006). However, the expression is not gener-

ally equivalent to equation (4), above (derived from Hohenlohe

and Arnold 2008), for circumstances in which the hypothesized

matrices are not proportional (i.e., R1 �= kR2). The design matrix,

D, is as previously defined.

Once the quantities L1 and L2 have been evaluated using

equations (2) and (3) respectively, they can be compared using a

likelihood ratio or transformed to obtain their corresponding infor-

mation criteria (such as Akaike information criterion, AIC). For

the former comparison, we first calculate −2log(L1/L2), which

should be asymptotically distributed as a χ2 with degrees of free-

dom equivalent to the difference in the number of parameters

estimated in the denominator and numerator models. For p =
2 and m = 2 (as in our centrarchid data, below), three more

parameters are evaluated in the two rate matrix model than in

the one rate matrix model, thus the likelihood ratio is expected

to be asymptotically distributed as a χ2 with three degrees of

freedom.

When n is small, as in this study (see below), −2 log (L1/L2)

may not be χ2 distributed (Revell 2008). In this circumstance,

one can also obtain the null distribution for the likelihood ratio

by way of numerical simulation. In this case, we should generate

a large number of datasets (say, 1000 or more) by simulation

using the single matrix MLE of R as our generating evolutionary

rate matrix. We then estimate the type I error probability of our

hypothesis by evaluating the fraction of likelihood ratios obtained

in simulation that are equal to or larger than the likelihood ratio

obtained from our observed data and tree.

As an alternative to hypothesis testing, we can compare our

one and two matrix models by first evaluating their AIC values

(Akaike 1974). AIC provides a model selection criterion that

weighs the likelihood of a model against the number of parameters

estimated. The AIC value for a particular fitted model can be

calculated as AIC = 2 k − 2log(L), in which k is the number of

parameters estimated and L is the likelihood of the model. The

preferred model is the one with the lowest AIC score. Hurvich

and Tsai (1989) also provided a modification of AIC corrected

for small sample size (AICc), defined as follows:

AICc = 2k − 2 log(L) + 2k(k + 1)

n − k − 1
. (5)

Here, as before, n is the number of the taxa in the analysis. When

the number of traits, m, is m = 2 (as in this study), for the one-

rate matrix model we estimate m(m − 1)/2 + m = 3 parameters

in the rate matrix, and an additional m = 2 parameters in the

vector a, thus k = 5 for this model. For the two rate matrix

model, we estimate m(m − 1)/2 + m = 3 more parameters for

the second rate matrix, and thus k = 8 for this model. Burnham

and Anderson (2002) recommend using AICc in preference to

AIC when the ratio of the number of observations divided by the

number of parameters estimated, n/k, is small (e.g., n/k < 40).

The values of AIC and AICc will converge for sufficiently large

n/k.

It should be kept in mind that this method assumes that

the branches of the phylogeny assigned to each rate matrix have

been hypothesized a priori. If, alternatively, we were to explore

several different hypotheses for evolutionary heterogeneity for

a given dataset, then we should also control for experiment-

wise type I error using an appropriate procedure for multiple

test correction (see Sokal and Rohlf 1995; Quinn and Keough

2002).

EMPIRICAL TEST

We applied this method to an empirical dataset and phylogeny for

28 centrarchid fish species. We analyzed two log-transformed,

size-corrected, morphological features that describe the shape
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Figure 1. (A) Species mean trait values for gape width and buccal

length (panel inset) for 28 species in the family Centrarchidae. (B)

The phylogeny with branch lengths for the same 28 fish species.

Species in the genus Micropterus, which consists of specialists on

large, evasive prey, are highlighted in grey in both panels.

of the mouth cavity, gape width and buccal length (Fig. 1),

in the context of the available phylogenetic reconstruction for

these species (Near et al. 2005; Collar and Wainwright 2006).

A complete description of the phylogenetic size correction and

several diagnostic tests that were used to assess the validity of

Brownian motion as a model for the evolutionary process in

these data is provided in a prior article (Collar and Wainwright

2006).

We hypothesized two different rate matrices: one for the

Micropterus clade and the other for the remaining centrarchid

lineages (Fig. 1). This a priori hypothesis is based on an inferred

shift in the selective regime in the Micropterus lineage. Relative to

other centrarchids, Micropterus species feed on a narrower range

of prey items, primarily fish and crayfish (Collar et al. 2005).

These large, evasive prey have likely imposed functional demands

on mouth morphology that differ from those experienced by the

other centrarchid fish species. We fit one and two rate matrix

models to the data and tree, evaluated the likelihoods of each

model, and then compared the models using log-likelihood ratios

and information criteria.

SIMULATION TEST

We also conducted a simulation test of the method. We tested the

type I error rate by simulating data under a rate homogeneous

model for the evolutionary process. For this we used the MLE

of the single rate matrix from our empirical dataset and tree. We

simulated 1000 datasets on our 28 taxon centrarchid phylogeny.

For each simulated dataset we estimated the likelihood of one and

two rate matrix models, evaluated the log-likelihood ratio, and

computed AIC and AICc values for each model. We estimated the

type I error rate as the fraction of tests for which a significant log-

likelihood ratio was yielded when compared to a χ2 distribution

with three degrees of freedom. We also evaluated the fraction

of analyses in which AIC or AICc indicated that the two matrix

model should be preferred. Because we generated the data for the

type I error test under the conditions of our null hypothesis (rate

matrix homogeneity), we were also able to use the distributions

of likelihood ratios obtained here as our null distribution for the

simulation test component of our empirical analysis, as described

above.

We also explored the power and parameter estimation of the

method. Again using the results from the centrarchid analysis as

our generating model, we simulated 1000 datasets on the em-

pirical tree, this time applying the branch assignment and rate

matrix estimates from the empirical two rate matrix test. We then

estimated the full, two matrix model using likelihood and eval-

uated parameter estimation by calculating the mean, mean bias,

and variance of the estimators across runs. We also evaluated the

power of the test under these circumstances as the fraction of

analyses for which the method detected significant heterogene-

ity in the evolutionary rate matrix throughout the tree (i.e., the

fraction of times in which the one matrix model was rejected

by our likelihood-ratio hypothesis test; or, similarly, the fraction

of times in which a two matrix model was selected by AIC or

AICc).
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Table 1. Empirical results. Shown is the maximum likelihood estimate (MLE) of R from a single evolutionary rate matrix model for the

evolutionary process, and the MLEs for R1 (other centrarchid lineages) and R2 (Micropterus) from a two rate matrix model. The inferred

evolutionary correlation(s), log likelihood, and uncorrected and small sample corrected Akaike information criterion values (AIC, AICc)

are also presented for each model, along with the results from hypothesis testing and model selection. From the likelihood-ratio test the

two matrix model is preferred (whether the P-value was obtained by comparison to the χ2 distribution or via simulation). The results

from AIC model selection are ambiguous, with the preferred model (indicated by the lowest AIC score) depending on whether small

sample correction was used.

Model r log(L) AIC AICc

One matrix model

MLE(R)=
[

5.97 1.73
1.73 2.91

]
×10−4 0.415 72.19 −134.4 −131.7

Two matrix model

MLE(R1)=
[

7.17 1.37
1.37 2.10

]
×10−4 0.353 76.85 −137.7 −130.1

MLE(R2)=
[

2.33 2.84
2.84 5.40

]
×10−4 0.801

Hypothesis tests Model selection

Likelihood-ratio test AIC1−AIC2 AICc1−AICc2

−2log(L1/L2)=9.317 P(χ2, df=3)=0.0254 3.317 −1.535
P(simulation)=0.0380

Results
EMPIRICAL TEST

Table 1 shows the single and full rate matrices from the test for

evolutionary rate matrix heterogeneity on our centrarchid data and

tree. The single rate matrix null was rejected by the likelihood-

ratio test (−2 · LR = 9.317). This was true regardless of whether

the likelihood ratio was evaluated against the χ2 with three de-

grees of freedom (P = 0.0254), or by simulation (P = 0.0380

from 1000 simulations; Table 1). In the full model, Micropterus

exhibits a three-fold slower evolutionary rate for gape width but

a much faster rate for buccal length, as well as a more than

twofold higher evolutionary correlation between the characters,

relative to the other centrarchid lineages. Model selection results

were ambiguous (Table 1). Although the uncorrected informa-

tion criterion (AIC) indicated that the two matrix model should

be preferred (�AIC = AIC1 − AIC2 = 3.317), the small sample

corrected criterion (AICc) recommended the one matrix model.

Nonetheless, because |�AICc| < 2.0 in this case, the preference

indicated by AICc should be considered ambiguous (Burnham

and Anderson 2002) (Table 1).

SIMULATION TESTS

Table 2 shows the results from the tests of type I error and power.

We found that our method had very close to appropriate type I

error, with the likelihood ratio and AIC slightly too liberal (i.e.,

choosing the incorrect, more complex model at a rate > 0.05),

and the AICc was conservative (Table 2). We also found that the

method had high power under the conditions of our simulations,

rejecting rate matrix homogeneity for the majority of simulations,

regardless of the criterion employed. Here again, however, AICc

was more conservative than the likelihood ratio or AIC (Table 2).

Table 3 shows the mean MLE of each matrix under condi-

tions of evolutionary rate matrix homogeneity (the one matrix

model) and heterogeneity (the two matrix model). Also shown

are the mean biases of the estimates and the variability of param-

eter estimates across analyses. Generating conditions were the

one and two matrix model MLE rate matrices from our empirical

results (Table 1). We found that, on average, both the one and

two matrix model parameter estimates closely approximated their

corresponding generating values. Mean bias ranged from 0.95 to

0.99, with average bias across all simulations and ML optimiza-

tions close to the ratio theoretically expected under the conditions

of our study (mean bias = 0.970; (n − 1)/n = 0.964 for n =
28).

Discussion
We propose a new method to fit multiple evolutionary rate matri-

ces to the phylogeny and species data for two or more continuous

characters. Our approach is based on the methods of O’Meara

et al. (2006) and Thomas et al. (2006), but multivariate, and Rev-

ell and Harmon (2008), but in which the evolutionary rate matrix

can change by factors other than a proportionality constant. The

evolutionary rate matrix contains evolutionary variances (rates)
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Table 2. Results from the tests of type I error and power. In

columns are the models selected (one or two rate matrix), given

the true models in rows. Model selection was performed either

by comparison of the likelihood ratio to a χ2 with appropriate de-

grees of freedom (LR-test), or by use of Akaike Information Criteria

with (AICc) and without (AIC) small sample correction. For conve-

nience and simplicity of presentation, we interpret the success or

failure to reject the null hypothesis of rate matrix homogeneity in

our likelihood-ratio test as implicating a two or one matrix model,

respectively. When the true (i.e., generating) model is the one ma-

trix model (rows 1, 2, and 3), the rightmost column represents the

type I error rates for each criterion. By contrast, when the true

model is the two matrix model (rows 4, 5, and 6), the rightmost

column represents the power of the method to reject rate matrix

homogeneity under the simulation conditions used in the present

study.

True model Criterion Model selected

One matrix Two matrix
model model

One matrix model LR-test 0.917 0.083
AIC 0.831 0.169
AICc 0.980 0.020

Two matrix model LR-test 0.219 0.781
AIC 0.120 0.880
AICc 0.427 0.573

on its diagonal and covariances elsewhere. As the evolutionary

correlation between two traits is a function of their evolutionary

variances and covariance, the method can be used to detect differ-

ences among phylogenetic lineages in the evolutionary correla-

Table 3. Mean parameter estimates from one and two matrix simulated data. For comparison, the generating matrices are presented

in Table 1 as the MLEs for the one and two matrix models estimated for the empirical dataset and tree. Mean biases, calculated as the

element by element ratio of the estimate over its known generating value, are also shown (1.0=no bias). Standard errors are not errors

of the estimates, but standard deviations of the MLEs of Ri across simulations.

Model R1 R2

One matrix model

mean, MLE(Ri )

[
5.80 1.70
1.70 2.79

]
×10−4 —

mean bias, MLE(Ri )/Ri

[
0.97 0.98
0.98 0.96

]

std. error, SD[MLE(Ri )]

[
1.57 0.84
0.84 0.79

]
×10−4 —

Two matrix model

mean, MLE(Ri )

[
6.87 1.31
1.31 2.00

]
×10−4

[
2.30 2.79
2.79 5.35

]
×10−4

mean bias, MLE(Ri )/Ri

[
0.96 0.96
0.96 0.95

] [
0.99 0.98
0.98 0.99

]

std. error, SD[MLE(Ri )]

[
2.21 0.86
0.86 0.65

]
×10−4

[
1.37 1.81
1.81 2.92

]
×10−4

tions between continuous characters. This method can be applied

to test hypotheses about how, when, and in what manner the evo-

lutionary correlation has changed over time and among lineages.

We illustrate the method with our empirical demonstration that

the evolutionary rate matrix in centrarchids changes in a manner

temporally coincident with an inferred shift in the dietary regime.

The likelihood method of this article can be similarly ap-

plied to other circumstances in which the evolutionary rate matrix

might be expected to differ on the different branches of a phylo-

genetic tree. The method will be useful to test hypotheses about

shifts in the shape and orientation of the adaptive surface, which

may occur because of changes in the selective environment or in

the functional integration of traits, as well as hypotheses about

the consequences of changes in the additive genetic variance-

covariance matrix, perhaps resulting from a shift in the mutation

rate, the effect and degree of pleiotropy, or the effective popu-

lation size. Nonetheless, to our knowledge, no prior study has

provided a method whereby multiple evolutionary rate matrices

(potentially differing in their correlation structure) are estimated

for different parts of a phylogenetic tree.

Our illustrative example and simulations are performed us-

ing a phylogeny in which each hypothesized rate matrix partition

in the tree consists of a set of contiguous branches (one a para-

phyletic group, the other a nested monophyletic clade and stem

branch; Fig. 1). As noted earlier, assigning branches to rate matrix

partitions in this way is not at all a requirement of the method (e.g.,

Revell 2008). Given an a priori hypothesis justifying it, any set of

branches can be assigned to any partition—so long as no portion

of branch length is assigned to two different partitions. In fact,
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fractions of a branch can even be assigned to different partitions,

for example, by using the set of stochastic character maps for a

discrete character hypothesized to affect the evolutionary rates or

covariances (Huelsenbeck et al. 2003; Bollback 2006).

We found that the method presented herein also has good

statistical properties. Type I error was slightly elevated above

its expected value, but low nonetheless. It is likely that the ele-

vated estimated type I error in this study is a consequence of the

asymptotic approximation of the likelihood ratio to a χ2 as the

sample size increases. The small size of our empirical phyloge-

nies for simulation (n = 28) and the findings of Revell (2008;

e.g., appendix fig. A4) support this interpretation. Lending fur-

ther credence is the fact that the likelihood ratio of our empirical

centrarchid two matrix versus one matrix comparison was less

significant when assessed via simulation (although P < 0.05 in

both cases; Table 1). Thus, it seems highly possible that type I

error of our method will decrease toward 0.05 as the sample size

of species is increased.

In this article, we focus on full one and two matrix models

in which the estimated matrices can differ in all possible man-

ners. Differences among lineages in the rate of evolution of either

character, in the evolutionary correlation, or in some combination

thereof might result in a significantly better fit for the two matrix

model by our method. As an alternative to the simpleminded ap-

proach of fitting only one and two matrix models, we could have

implemented a test in which various degrees of evolutionary rate

matrix dissimilarity are hierarchically compared (e.g., Phillips

and Arnold 1999). For example, we might have tested whether

the matrices shared various aspects of their eigenstructure.

Hohenlohe and Arnold (2008) propose a related analysis

in which different aspects of eigenstructure similarity between a

hypothesized and ML estimated evolutionary rate matrix are com-

pared. To preliminarily explore the application of this approach

to our method, we used the same hierarchy of tests to evaluate

successively more heavily parameterized models of character evo-

lution for the data and tree from Micropterus and other centrarchid

fishes (Fig. 1). The levels in the hierarchy are based on sharing a

successively smaller fraction of the eigenstructure among matri-

ces and are (for a 2 × 2 matrix): equality, proportionality, shared

eigenvectors, and no common structure. We found that the only

significant likelihood ratio falls between the shared eigenvectors

and dissimilarity models. This probably reflects the fact that the

greatest difference between the rate matrices estimated in this

study is in their orientation (Table 4).

Although Hohenlohe and Arnold (2008), following Flury

(1988) and Phillips and Arnold (1999), focus on the progression

of matrix similarity illustrated in Table 4, we note that matrices

can differ in a whole variety of ways other than those reflected in

this series. For example, matrices might share a common set of

evolutionary rates, but differ in their correlation structure (or vice T
a
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versa). This type of similarity can be difficult to detect using the

hierarchy of tests in Table 4.

We focus on a comparison of two rate matrices each involving

only two phenotypic traits; however, this is not a limitation of

our method. It is straightforward to extend this method to fit a

model in which matrices for more than two rate matrix categories

or more than two phenotypic traits are evaluated. Nonetheless,

empiricists should keep in mind that the number of parameters

to be estimated increases as p[m(m − 1)/2 + m] + m, where

p is the number of rate matrix partitions (groups of branches

associated with each rate matrix) in the tree, and m is the number

of characters. Thus, the number of parameters increases more

rapidly with the addition of characters than with the addition of

rate matrix partitions. Because numerical optimization is required

to obtain the ML parameter estimates and likelihood, estimation

will become progressively more difficult as characters are added

to the analysis.

We illustrate this method with an empirical test of similar-

ity in the evolutionary rate matrices for two groups of centrar-

chid fishes. These rate matrices describe the evolution of gape

width and buccal cavity length, two morphological features of

the suction-feeding mechanism (Carroll et al. 2004). The demon-

strated difference in evolutionary rate matrices for these lineages

suggests that mouth shape has evolved differently in the Mi-

cropterus clade than it has throughout the rest of the centrarchid

tree (Table 1). The strong, positive association between the evolu-

tion of gape width and buccal length in Micropterus suggests that

changes in buccal cavity size are occurring without modification

of shape. In contrast, the low evolutionary correlation between the

characters in the other centrarchid lineages reveals that evolution

has resulted in modifications to both buccal cavity size and shape.

The shift in the evolutionary rate matrix in Micropterus is

concordant with a shift to a diet comprising primarily fish and

crayfish, which are relatively large and evasive prey items. The

other centrarchid lineages feed on a wider breadth of prey items

that impose a greater range of functional demands on their capture.

These vary from mircocrustacea that swim freely in open water,

to aquatic insects that burrow in the benthos or cling to substrates

(Collar et al. 2005). Therefore, the observed shift in the evolu-

tionary rate matrix might reflect these differences in functional

demands imposed by different trophic niches.

We note that hypothesis tests (i.e., likelihood ratio) and model

selection (i.e., AIC, AICc) yielded slightly discordant results in

our study. In particular, AICc suggested that a simple, one matrix

model was the best-fit model, whereas the AIC model selec-

tion criterion and likelihood-ratio tests based on comparison to

the χ2 distribution or simulation recommended the more com-

plicated, two rate matrix model. This result is consistent with

our finding that AICc is quite conservative regarding the se-

lection of the more heavily parameterized model, choosing it

Figure 2. A plot of the model recommendations for a given dif-

ference in the number of parameters (k2 − k1) and log-likelihood

scores. If a log-likelihood difference falls above the curve for a

given model selection (AIC, AICc) or hypothesis testing criterion

[LR(χ2)], then Model 2 is recommended by the criterion; whereas

if the likelihood difference falls below the curve, Model 1 is rec-

ommended (or cannot be rejected). For AICc, we fixed k1 = 5 and

n = 28 for this illustration. The vertical line k2 − k1 = 3 and our

observed likelihood difference of log(L 2) − log(L 1) = 4.66 are

also plotted (the latter by a star). Because our observed likelihood

difference falls above the curves for AIC and LR (χ2), Model 2 is

preferred by those criteria. By contrast, Model 1 is indicated by

AICc, as in Table 1.

when not the generating model in only 2.0% of simulations

(Table 3).

Importantly, the discrepancy between results from hypothe-

sis tests and information criteria does not necessarily represent a

“failure” of either approach—because they have different goals. In

fact, statistical hypothesis testing and information-theoretic model

selection criteria represent fundamentally different paradigms in

model choice (Burnham and Anderson 2002). For example, model

selection criteria do not have as their target a type I error probabil-

ity of 0.05, but rather their goal is to choose the best approximating

model for inference (Burnham and Anderson 2002). Thus, concor-

dance between the results of likelihood ratio or other hypothesis

tests and model selection criteria are not necessarily expected

under all circumstances. Figure 2 illustrates the predicted discor-

dance between the model selection criteria AIC and AICc, and a

likelihood-ratio test evaluated by comparison to the χ2 distribu-

tion. In this figure, the region above each curve is the region of

log-likelihood difference in which the more complicated model

(Model 2 in the illustration) is chosen over the simpler model. For

the sake of simplicity, we set n = 28 and k1 = 5 in the calculation

of �AICc, as in this study. From a practical perspective, we sus-

pect that AICc and hypothesis testing via simulation will be more
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conservative approaches to model choice when the number of

samples is small, whereas all methods will probably converge in

their recommendation for larger n (at some point this must be true

for AIC and AICc, because AICc − AIC → 0.0 as n/k → ∞).

In the present article, we provide a likelihood method and

hypothesis testing framework for the analysis of evolutionary

rate matrix heterogeneity in the context of evolutionary trees.

We suggest that investigations into changes in the evolutionary

rate matrix may provide additional insights into the differential

diversification of forms among evolutionary lineages. Recently,

methods have been developed to apply the phylogenetic approach

to the comparison of morphological disparity among groups (Col-

lar et al. 2005; O’Meara et al. 2006; Thomas et al. 2006). These

methods have thus far focused primarily on the univariate analy-

sis of evolutionary rate heterogeneity among lineages. The rate of

evolution can be interpreted as the rate of accumulation of within-

clade variation (Martins 1994; Hansen and Martins 1996) and as

such has a direct relation to the manner in which morphospace

is filled by a particular group as it evolves. However, an addi-

tional aspect of morphospace occupation involves the evolution-

ary covariance between characters. Low evolutionary correlations

between characters should lead to broader multidimensional mor-

phospace occupation, and low evolutionary correlations between

characters may indeed be a hallmark of very diverse groups. We

advocate the use of our method to investigate the role that might be

played by the evolutionary correlations between characters in fa-

cilitating or inhibiting the acquisition of morphological disparity

in different evolutionary lineages.
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