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A B S T R A C T   

Coleoids are the most diverse group of cephalopod mollusks. While their origin is date during the Mesozoic, the 
diversification pattern is unknown. However, two hypotheses have been proposed. The first suggests an 
increasing diversification rate after the Cretaceous–Paleogene extinction event (K–Pg) as consequence of empty 
habitats left by the ammonites and belemnites. The second hypothesis proposes a mid-Cenozoic increase in 
diversification rate related to distributional changes during ice ages and biotic interactions. To test these hy-
potheses, we estimated a lineage through time (LTT) and the gamma-statistic along with model-based diversi-
fication rates. These analyses were conducted on a dated molecular phylogeny for coleoids that we reconstructed 
using five molecular markers (cytochrome b, 16S rRNA, cytochrome oxidase I, rhodopsin, and PAX-6). Our 
divergence time estimation suggests that coleoids originated in the Mesozoic Era (Middle Triassic) and that both 
main clades (Decapodiformes and Octopodiformes) diverged in the Cretaceous/Jurassic Period. The LTT, gamma 
statistic, and diversification rates inferred with the Bayesian Analysis of Macro-evolutionary Mixtures (BAMM), 
indicate an acceleration in diversification rate over time since the origin of coleoids. Additionally, BAMM 
allowed us to detect abrupt increases in diversification rate before and after the K-Pg boundary. Our results 
partially support both hypotheses as all analyses indicate that the coleoid diversification rate was increasing 
during the Cenozoic. However, our results also indicate increasing diversification rates before the K-Pg boundary. 
We propose that the radiation of coleoids has been shaped by an acceleration in diversification rate over time, 
including exceptional episodes of abrupt increases before and after the K-Pg boundary.   

1. Introduction 

Among cephalopods, the subclass Coleoidea is the most diverse and 
abundant lineage containing over 800 described species (Hoving et al., 
2014; Allcock et al., 2015; Jain, 2017). Coleoids have an internal shell 
(sometimes absent), 8 or 10 circumoral appendages, and a pair of cte-
nidia (Jereb et al., 2010; Hanlon et al., 2018). These cephalopods have a 
wide distribution in all oceans – from the poles to the tropics – on 

continental margins and in oceanic areas (Hanlon and Messenger, 1996; 
Jereb and Roper, 2005). Coleoids represent the majority of the diversity 
of modern cephalopods and constituted an important part of the 
Paleozoic nekton (Kröger 2005). 

Coleoids are considered monophyletic based on morphological and 
molecular data (Carlini and Graves, 1999; Carlini et al., 2000; Vecchione 
et al., 2000; Lindgren et al., 2004; Strugnell et al., 2005; Strugnell and 
Nishiguchi, 2007; Allcock et al., 2011; 2015; Lindgren et al., 2012; 
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Strugnell et al., 2017; Lindgren and Anderson, 2018) and subdivided 
into two main clades: Decapodiformes (squids, bobtail squids and cut-
tlefishes) and Octopodiformes (vampire squid, cirrate and incirrate oc-
topods). Nonetheless, some of the relationships among major taxa 
within each superorder are complex (specially in Decapodiformes) and 
continue to be the subject of ongoing debate (Nishiguchi and Mapes, 
2008; Lindgren et al., 2012; Sanchez et al., 2018, Anderson and Lindg-
ren, 2021). 

According to the fossil record, cephalopods originated in the Early 
Cambrian period (~530 Mya) from a monoplacophoran-like mollusk 
(Ward and Bandel, 1987; Mutvei et al., 2007; Kröger et al., 2011) that 
evolved quickly, possibly due to its ability to regulate buoyancy, and 
that diversified into several lineages during the Ordovician (Kröger, 
2005). Paleontological records dating from the Early Carboniferous 
(~330 Mya) suggest an origin of the subclass Coleoidea from Devonian 
Bactritoidea (Nishiguchi and Mapes, 2008; Kröger et al., 2011; Klug 
et al., 2019). In addition, the internalization and reduction of the 
mineralized shell could favour the diversification of coleoids at the end 
of the Paleozoic (~276 Mya) into the two main lineages, Octopodi-
formes and Decapodiformes (Boletzky, 1999; Young et al., 1998; Boyle 
and Rodhouse, 2005). 

The molecular divergence timing of the Cephalopoda has been esti-
mated several times in previous research (e.g., Strugnell et al., 2006; 
Kröger et al., 2011; Tanner et al., 2017; Uribe and Zardoya, 2017; 
Sanchez et al., 2018). Strugnell et al. (2006) were the first authors to use 
both molecular and fossil data to estimate divergence times for taxa 
within coleoid cephalopods and suggested a much earlier (Paleozoic, 
~400 Mya) origin for Decapodiformes and Octopodiformes than pre-
viously estimated. However, recently, Tanner et al. (2017) suggest that 
cephalopods diverged during the Silurian–Devonian period (~420 
Mya), while coleoids trace their origin to the latest part of the Paleozoic 
Era. Tanner et al. (2017) also found an ancient origin of Octopodiformes, 
extending to the Early Mesozoic Era (~220 Mya), and presented evi-
dence suggesting that Decapodiformes diversified in the Jurassic Period 
(~180 Mya). These divergences estimates highlighted that the modern 
diversity of coleoid cephalopods could have emerged during the Meso-
zoic marine revolution (Klug et al., 2010), a period also marked by the 
radiation of most jawed nektonic marine vertebrates. Thus, the coleoid 
radiation could have been strongly influenced by competition with 
Mesozoic fish, as well as by the predation pressure exerted by ichthyo-
saurs, mosasaurs, and plesiosaurs (Sato and Tanabe, 1998; Everhart, 
2004; Lomax, 2010). This suggests that the origin of modern cephalo-
pods could have been in part contingent upon ecological competition 
with marine vertebrates (Packard, 1972; Tanner et al., 2017). 

Previous studies have provided two competing hypotheses for the 
diversification of coleoids. The first hypothesis suggests that a rapid 
diversification of coleoids began after the K–Pg boundary, related to the 
mass extinction of Mesozoic vertebrates (Packard, 1972; Aronson, 
1991). According to this hypothesis, the meteorite impact that occurred 
~ 65 Mya, marking the transition from the Late Cretaceous to the 
Paleogene (K–Pg), would have caused a violent global change in 
terrestrial and marine ecosystems (Alvarez et al., 1980; Norris et al., 
1999). The K–Pg mass extinction accounts for the disappearance of 
about 75% of vertebrates (Archibald, 2012). However, in the seas, this 
event would have enabled vertebrates –such as ray-finned fishes 
(Acanthopterygii)– to diversify (Friedman, 2010; Near et al., 2013; 
Amorim and Costa, 2018). For marine invertebrates, the K–Pg event 
caused the complete extinction of ammonites and belemnites (Surlyk 
and Nielsen, 1999; Sole et al., 2002; Iba et al., 2011), which could have 
led to the diversification of contemporary coleoid cephalopods. If this is 
the case, then the increase in coleoid diversification rates could be 
associated with a decreased competition pressure resulting from the 
disappearance of predators, the empty habitats left by their competitors, 
and a greater adaptive plasticity (Solé et al., 2002; Lockwood, 2004). 

The second hypothesis suggests an increase in coleoids diversifica-
tion specifically in the mid Cenozoic (~30 Mya), during ice ages related 

to the distributional changes and adaptation to the new climate condi-
tions (e.g. cold waters) associated with biotic interactions (Nesis, 1978; 
2003). This hypothesis is based on the fact that in the mid Cenozoic, the 
competition between cephalopods and fish, without many top predators 
to contend with, could have driven a much broader ecological diversi-
fication of coleoids. This could help explain why both coleoids and ray- 
finned fishes have achieved such great evolutionary success. Moreover, 
other research indicates that the main radiation of ray-finned fishes 
(Actinopterygii) began in the Cenozoic after K–Pg boundary and not in 
the Mesozoic (Sibert and Norris, 2015). 

Several studies have inferred a rapid diversification of coleoids 
during the Cenozoic, which is attributed to the filling of the empty 
habitats left by the ammonites and belemnites (Lewy, 1999; Clarke, 
2003; Fuchs and Lukeneder, 2014; Clements et al., 2017). Furthermore, 
coleoids refined jetting during the Cenozoic compared with coleoids 
from the Mesozoic (Fuchs & Iba, 2015; Fuchs et al., 2016), which could 
have allowed them to quickly colonize the empty habitats. The loss of 
calcification through coleoid evolution generated a change in their 
buoyancy – from neutral to negative (Wells and O’Dor, 1991; Fuchs and 
Iba, 2015). These adaptations could have helped coleoids to evolve 
alternative modes of movement and/or improved jet propulsion effi-
ciency, leading to increased species diversification. 

In this study, our aim was to estimate the divergence times of 
coleoids and the timings of increase in coleoid diversification rates using 
a reconstructed dated molecular phylogeny. With regard to diversifi-
cation, we tested the two hypotheses that pose that the increase in 
diversification rate occurred after the K-Pg boundary (~65 Mya) or 
around the Mid-Cenozoic (~30 Mya), and additionally, we tested 
whether there was an abrupt increase in diversification rate along the 
evolutionary history of coleoids through time. 

2. Materials and methods 

2.1. DNA sequencing 

We assembled a sequence dataset of 190 species of cephalopods by 
merging nucleotide sequences from GenBank with new sequence data 
obtained in study. Our dataset spanned a broad diversity of cephalopods 
(including members of Sepiida, Spirulida, Oegopsida, Myopsida, Octo-
poda and Vampyromorpha, with two species of Nautilida as outgroups) 
(Table S1). Our assembled sequence dataset included three mitochon-
drial genes (cytochrome b (CYTB), 16S rRNA (16S) and cytochrome 
oxidase I (COI)) and two nuclear genes (rhodopsin (RHO) and PAX-6 
(PAX6)). 

DNA was extracted from 24 species following a saline extraction 
protocol (Aljanabi and Martinez, 1997) for mitochondrial genes (CYTB, 
16S and COI). PCR amplification for the CYTB gene was conducted using 
Cef-H and Cef-L primers (Santaclara et al., 2007). For 16S and COI, PCR 
amplification was performed using the same primers employed by All-
cock et al. (2008). Our PCRs contained 1 µl (50 ng) of DNA template, 2.5 
µl of 10X buffer, 2 µl (2 mM) MgCl2, 1 µl (100 µM) of dNTP, 0.5 µl (10 1 
M) of a solution of each primer, and 1 unit of Taq-polymerase, with a 
final volume of 25 µl. We performed PCRs using a Bio-Rad MyCycler ™ 
thermocycler (Bio-Rad, Hercules, CA, USA). The cycle program was as 
follows: a preheating step of 3 min at 95 ◦C, then 35 cycles of 30 s at 
95 ◦C, 40 s at 51◦ C for COI, 50◦ C for CYTB and 55◦ C for 16S, and 1 min 
and 30 s at 72 ◦C, followed by a final extension step of 7 min at 72 ◦C. 
PCR products were purified and sequenced by Macrogen Inc (Korea). We 
edited the bidirectional sequences using ProSeq v2.9 software (Filatov, 
2002). We have accessioned all sequences generated for this study in 
GenBank (Table S1). 

2.2. Phylogenetic analyses 

We separately aligned the nucleotide sequences for each gene using 
Multiple Sequence Comparison by Log-Expectation (MUSCLE) with 
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default parameters for gap insertion and gap extension (Edgar, 2004), 
implemented in the MEGA v7.0 software (Kumar et al., 2016). We 
evaluated sequence saturation using Xia’s test implemented in DAMBE 5 
software (Xia, 2013). Once aligned, we used Mesquite v3.10 (Maddison 
and Maddison, 2016) to concatenate our aligned sequences for each of 
the five genes (CYTB, 16S, COI, RHO, and PAX6) into a single parti-
tioned matrix. 

The phylogenetic relationships of coleoid cephalopods was inferred 
by means of Bayesian inference using MrBayes v3.2 (Ronquist et al., 
2012). We identified the best-supported substitution model for each 
gene using jModelTest2 (Darriba et al., 2012) (Table S2). For coding 
genes (CYTB, COI, RHO, and PAX6) a codon partition scheme was 
applied with unlinked parameters. This scheme gave a total of 13 par-
titions. Bayesian analysis was conducted with four chains, each with 10 
million generations, sampled every 1,000 generations. The first 10% of 
generations was discarded as burn-in, leaving a total of 9,001 trees 
sampled from the posterior probability distribution. From these trees, 
we computed a (50%) majority consensus tree. We also evaluated 
convergence to the posterior distribution and mixing of the MCMC using 
Tracer v1.6 (Rambaut et al., 2014). Effective Sample Sizes (ESS) > 200 
were accepted. 

To compare our results from Bayesian Inference (BI) obtained from 
MrBayes, we conducted a Maximum Likelihood (ML) analysis using the 
IQ-TREE v1.6.5 (Nguyen et al., 2015; Trifinopoulos et al., 2016). In this 
analysis, we used separate nucleotide substitutions models for each 
partition as determined by ModelFinder (Kalyaanamoorthy et al. 2017, 
Chernomor et al., 2016). ModelFinder determined the best substitution 
model for each codon partitions (position 1, 2 and 3) of coding genes (i. 
e., CYTB, COI, RHO, PAX6). This scheme for coding genes gave a total of 
12 partitions. When adding the non-coding gene (16S) we obtained a 
final 13 partitions matrix for analysis (Table S3). The node support was 
assessed using 5,000 replicates of the ultrafast bootstrap approximation, 
as implemented in IQ-TREE v1.6.5 (Hoang et al., 2018). 

2.3. Divergence times estimation 

Divergence times was estimated using BEAST v1.10.4 (Suchard et al., 
2018) for the partitioned data set (CYTB, 16S, COI, RHO, PAX6) 
employing the same substitution models used for each character set in 
MrBayes phylogenetic analyses. We also used three codon partitions for 
coding genes (position 1, 2 and 3) with unlinked parameters (substitu-
tion rates and base frequencies). These options were assigned in BEAUti 
v1.10.4 (Suchard et al., 2018). Both, strict and relaxed molecular clocks 
were ran under different models (uncorrelated lognormal, gamma, and 
exponential). We used a ‘Yule’ (i.e., pure-birth) model as tree prior, and 
then conducted 20,000,000 generations of MCMC, logging every 1,000 
generations. After excluding the first 10% (i.e., 2,000,000 generations) 
as burn-in, we verified that our effective sample sizes (ESSs) were all >
200 using Tracer software. 

The molecular clock was adjusted using seven calibration points 
(Table S4). The first calibration point is the divergence of the Nautiloi-
dea and the lineage estimated to have led to Coleoidea (Bactrites) from 
the lower Devonian (Pragian, ~408 Mya; Kröger and Mapes, 2007) with 
gamma distribution and the following parameters: offset = 408, shape 
= 2.0, scale = 3.0. The second calibration point is the split between 
Decapodiformes and Octopodiformes using the octopodiform genus 
Germanoteuthis from the middle Triassic (Ladinian, 236 Mya; Schweigert 
and Fuchs, 2012) with gamma distribution and the following parame-
ters: offset = 236, shape = 2.0, scale = 3.0. The third calibration point is 
the split of Vampyromorpha and Octopoda using the genus Loligosepia 
from the early Jurassic (Sinemurian, 195 Mya; Fuchs and Weis, 2008) 
with gamma distribution and the following parameters: offset = 195, 
shape = 2.0, scale = 3.0. The fourth calibration point is the split between 
Spirulida and Oegopsida from the early Cretaceous (Barremian, 128 
Mya) based on previous works (Tanner et al., 2017) with normal dis-
tribution and the following parameters: mean = 128, s.d. = 12.8 Mya. 

The fifth calibration point is the divergence of the incirrate crown group 
using the species Styletoctopus annae from the late Cretaceous (Cen-
omanian, 93 Mya; Fuchs et al., 2009) with gamma distribution and the 
following parameters: offset = 93, shape = 2.0, scale = 3.0. The sixth 
calibration point is the divergence of loliginid subgroups using the 
species Loligo applegatei from the early Eocene (Ypresian, 48 Mya; Clarke 
and Fitch, 1979) with gamma distribution and the following parameters: 
offset = 48, shape = 2.0, scale = 3.0. The seventh calibration point is the 
divergence of the Argonautoidea using the species Obinautilus pulchelus 
from the early Oligocene (Rupelian, 29 Mya; Kobayashi, 1954) with 
gamma distribution and the following parameters: offset = 29, shape =
2.0, scale = 1.0. We identified the best-supported model for the mo-
lecular clock (strict or relaxed) by Bayes Factors. 

2.4. Assessing diversification rate hypotheses 

To test the hypotheses, we performed several diversification analyses 
on our maximum clade credibility tree (MCCT), obtained from BEAST 
analyses. We also performed diversification analyses on alternative trees 
that represent different topological hypotheses. We used PHYTOOLS 
v0.6–99 (Revell 2012) and DIVERSITREE v0.9–9 (FitzJohn, 2012) in R 
v3.5.1 (R Core Team, 2020) to estimate the LTT, gamma statistic, and 
diversification rates, respectively. In addition, the diversification rate 
pattern was explored using BAMM v2.5 (Rabosky, 2014) to identified 
abrupt shift of diversification along the phylogeny. 

We first tested deviation from a constant-rate pure-birth diversifi-
cation process using the γ-statistic of Pybus and Harvey (2000), while 
controlling for incomplete taxon sampling via the Monte Carlo constant 
rates (MCCR) test with 5,000 simulations using PHYTOOLS. Our 
assumed sampling fraction is based on having sampled 188 out of 840 
described species of coleoids (Hoving et al., 2014). We also compared 
the observed LTT plot to simulated LTTs assuming a pure-birth process 
with 10,000 iterations using the PHYTOOLS function ‘pbtree’, followed 
by a test of γ-statistic with the simulated pure-birth phylogenies. 

Second, to estimate speciation and extinction rates from our MCCT, 
we used the Maximum Likelihood method employed by Nee et al. (1994) 
implemented in the PHYTOOLS ‘fit.yule’ and ‘fit.bd’ functions as fol-
lows: first fitting a Yule (pure-birth) model and then a birth–death model 
to our estimated tree. Both functions also take into account the incom-
plete taxon sampling of this study (188 of 840 described species; Hoving 
et al., 2014) using the method suggested by Stadler (2012). 

Third, using DIVERSITREE, we designed and ran a Bayesian MCMC 
analysis of diversification (10,000 generations). We then visualized the 
posterior distribution of the speciation rate (λ) and extinction rate (μ). 
Additionally, we estimated the net diversification (r [λ – μ]) and the ratio 
of extinction to speciation rates (ε [μ / λ]). We also estimated the LLT 
and the speciation and extinction rates on three different phylogenetic 
topologies. These alternative topologies were based on Strugnell et al. 
(2017), Tanner et al. (2017), and Anderson & Lindgren (2021). We 
obtained these topologies by forcing the monophyly of the orders of 
Decapodiformes in BEAST to test if the tree topology can affect our 
results. 

Finally, we additionally tested the diversification hypotheses by 
inferring the diversification rates across all branches of the MCCT, using 
BAMM v2.5 (Rabosky, 2014). BAMM is specially designed to detect 
heterogeneity in evolutionary rates, and it assumes that the rate of 
diversification changes across phylogenetic branches given a Poisson 
process. BAMM explores many candidate models of diversification ac-
cording to the data and enables us to estimate the posterior probability of 
each model. The diversification model can also account for abrupt shifts 
in rate, which brings the unique opportunity to test whether there was 
any significant increase in diversification rate during the mid-Cenozoic 
(hypothesis 2). We used the prior information obtained with the set-
BAMMpriors function in BAMMtools R package (Rabosky et al., 2014). 
We ran the BAMM analysis considering the species sampling fraction 
across every order of Coleoidea. To obtain the orders’ sampling fraction 
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we considered the number of recognized species per order given the 
World Register of Marine Species (WoRMS; see Table 2). We ran the four 
MCMC chains for 51 million generations, sampling each 50,000 gener-
ations on a random sample of 20 trees obtained from the posterior dis-
tribution of BEAST analyses. In addition, the analysis was ran on the 
random samples of trees to evaluate the effect of alternative topologies 
and divergence times on the inferred diversification rate patterns. 

3. Results 

3.1. Phylogenetic analysis 

Xia’s test found no saturation of coding genes (CYTB: Iss = 0.562 <
Iss.c = 0.713, P < 0.001; COI: Iss = 0.327 < Iss.c = 0.718, P < 0.001; 
RHO: Iss = 0.443 < Iss.c = 0.709, P < 0.001; PAX6: Iss = 0.245 < Iss.c =
0.683, P < 0.001). 

The consensus of 9,001 phylogenetic trees sampled from the poste-
rior distribution using MCMC in MrBayes (Fig. S1) showed high poste-
rior probability (PP) values (>0.95) for 136 of the 189 nodes (71.9%). 
Bootstrap values on the ML tree (Fig. S2) were high (>90%) in 150 of the 
189 nodes (79.4%) and corresponded closely to the posterior probabil-
ities obtained using MrBayes (Fig. 1). The ML tree from IQ-TREE 
exhibited the best topology, resolving the polytomies present in the BI 
tree with high bootstrap support (>90, Fig. S1). For this reason, and due 
to the high congruence between phylogenies (ML and BI), we present the 
ML tree with the node support data combined in a single tree, showing 
the ultrafast bootstrap values from ML and the posterior probability 
values from the BI in the nodes (Fig. 1). 

The topology of the estimated tree shows three main groups: Clade 1 
represented by subclass Coleoidea; Clade 2 consisted of the superorder 
Decapodiformes; and, finally, Clade 3 composed of the superorder 
Octopodiformes. Within Clade 2, we identified five subclades (Fig. 1): 
Sepiolida (Clade 4); Idiosepiida (Clade 5); Sepiida (Clade 6), Spirulida +
Oegopsida (Clade 7); and Loliginidae (Clade 8) (Fig. 1). Within Clade 3, 
we noted a total of three primary subclades: Cirrata (Clade 9); Argo-
nautoidea (Clade 10); and Octopodoidea (Clade 11) (Fig. 1). 

3.2. Divergence times 

In our divergence time estimation, we found that the model that best 
fitted our data was the relaxed uncorrelated molecular clock with 
lognormal distribution (-ln = 33491.41, BF > 0.5). According to this 
model, the mean divergence time estimate for the crown node of 
Cephalopoda dates to the Early Devonian at 412.08 Mya (95% HPD: 
408.14 – 419.51; Table 1, Fig. 2). The split between Decapodiformes and 
Octopodiformes was in the Middle Triassic at around 241.20 Mya 
(236.14 – 250.91; Table 1, Fig. 2). The Most Recent Common Ancestor 
(MRCA) of Decapodiformes was in the Early Cretaceous at 109.76 Mya 
(93.15– 127.31; Table 1, Fig. 2), Sepiolids began to diversify in the Late 
Cretaceous 68.51 Mya (51.15 – 91; Table 1, Fig. 2), Idiosepiids began to 
diversify in the Late Eocene 35.84 Mya (20.38 – 52.28; Table 1, Fig. 2), 
Sepiids began to diversify in the Late Cretaceous 68.75 Mya (54.45 – 
81.88; Table 1, Fig. 2). Moreover, the MRCA between spirulids and 
oegopsids was in the Late Cretaceous 88.66 Mya (75.71 – 101.9; Table 1, 
Fig. 2), Oegopsid squids began to diversify in the Late Cretaceous 76.99 
Mya (64.64 – 90.17; Table 1, Fig. 2), and the beginning of diversification 
for loliginid squids was in the Middle Paleocene 58.22 Mya (50.32 – 
66.79; Table 1, Fig. 2). The split between Vampyromorpha and Octo-
poda was in the Early Jurassic 198.92 Mya (195.23 – 205.75; Table 1, 
Fig. 2), Cirrate octopods began to diversify in the Late Cretaceous 71.8 
Mya (36.93 – 112.92; Table 1, Fig. 2), Incirrate octopods began to 
diversify in the Late Cretaceous 99.85 Mya (93.3 – 110.33; Table 1, 
Fig. 2), Argonautoid octopods began to diversify in the Late Eocene 
39.46 Mya (32.63 – 46.52; Table 1, Fig. 2) and, finally, the beginning of 
diversification for the family Octopodoidea (without Eledonidae) was in 
the Late Cretaceous 91.32 Mya (80.47 – 103.16; Table 1, Fig. 2). 

Fig. 1. Bayesian phylogram based on the majority rule consensus tree from 
9,001 trees sampled from the posterior distribution using MCMC. Node values 
represent posterior probability/bootstrap support 
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3.3. Assessing diversification rate hypotheses 

The observed LTT plot shows an exponential growth curve (Fig. 3; 
red line, Fig. S3); with a gamma value (γ = -0.9541) higher than the 
gamma values obtained from the null model distribution (γ = -5.6768 
average) (Fig. S4). This result indicates an acceleration of lineage 
accumulation since the origin of Coleoidea. Moreover, according to 
corrected values of the γ-test statistic obtained by the MCCR test, the 
hypothesis of constant speciation under a Yule pure-birth model is 
strongly rejected (γ = -0.9541, p < 0.001). This result corroborates the 
pattern of variable diversification rate (increasing rate) during the ra-
diation of coleoids. Considering these results, we can partially support 
the two guiding hypotheses of this study, as the coleoid diversification 
rate was increasing after the K-Pg boundary, during the Cenozoic, but 
our results show that diversification rate was also increasing before K- 
Pg, during the Mesozoic. In the best-fitting birth–death model, the ML 
speciation rate (λ) was estimated to be 0.119 lineages/Mya with an 
extinction rate (μ) of 0.086 lineages/Mya (Fig. S5). The birth–death 
model explained our estimated tree significantly better than the Yule or 
pure-birth model (LRT = -45.43, χ2 = 27.46, P < 0.001). The LTT plots 
obtained from phylogenetic topologies given previous studies (Fig. S6) 
presented similar diversification patterns (Fig S7; S8; Table S5) – we 

found an increasing diversification rate pattern, since the origin of 
coleoids, across all alternative phylogenetic topologies. 

The BAMM analysis based on the MCCT corroborate previous results. 
BAMM shows an overall increase in diversification rate over coleoid 

Table 1 
Estimated divergence time for each taxa in this study with their Highest poste-
rior density (HPD 95%)  

Taxa Period Median divergence 
time (Mya) 

HPD 95% 
(Mya) 

Cephalopoda Early 
Devonian  

412.08 408.14 – 
419.51 

Coleoidea Middle 
Triassic  

241.20 236.14 – 
250.91 

Decapodiformes Early 
Cretaceous  

109.76 93.15 – 
127.31 

Sepiolida Late 
Cretaceous  

68.51 51.15 – 
91.00 

Idiosepiida Late Eocene  35.84 20.38 – 
52.28 

Sepiida Late 
Cretaceous  

68.75 54.45 – 
81.88 

Spirulida +
Oegopsida 

Late 
Cretaceous  

88.66 75.71 – 
101.90 

Oegopsida Late 
Cretaceous  

76.99 64.64 – 
90.17 

Loliginidae Late 
Paleocene  

58.22 50.32 – 
66.79 

Octopodiformes Early Jurassic  198.92 195.23 – 
205.75 

Cirrata Late 
Cretaceous  

71.80 36.93 – 
112.92 

Incirrata Late 
Cretaceous  

99.85 93.30 – 
110.33 

Argonautoidea Middle 
Eocene  

39.46 32.63 – 
46.52 

Octopodoidea Late 
Cretaceous  

91.32 80.47 – 
103.16  

Table 2 
Orders’ sampling fraction used for BAMM analyses.  

Order Number 
sampled 
species 

Number of WoRMS 
recognized species 

Sampling fraction 
used in BAMM 

Idiosepiida 3 7 0.429 
Myopsida 27 48 0.563 
Oegopsida 25 266 0.094 
Sepiida 18 120 0.150 
Sepiolida 10 86 0.116 
Spirulida 1 1 1.000 
Octopoda 103 306 0.337 
Vampyromorpha 1 1 1.000  

Fig. 2. Molecular divergence times of cephalopods. Bars in each node represent 
95% High Posterior Density (HPD) intervals on each estimate. CP 1–6 are the 
calibration points. See Methods for details. 
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radiation (Fig. 4a). Furthermore, diversification models with discrete 
shifts in rate are strongly favoured over the null model of no discrete 
shifts (Bayes Factor > 100). BAMM found that two diversification 
models are equally likely to describe the diversification pattern of 
coleoids. Both models reach the highest posterior probability, repre-
senting the 33% of all the sampled models (17% plus 16% of the posterior 
sample of models, Fig. 4b and c). These models show three discrete shifts 
of increase in diversification rate before the K-Pg and one shift after the 
K-Pg (Fig. 4b and c). Regarding the shifts before the K-Pg, one was 
detected on the branch leading to the species Vampyroteuthis infernalis 
(Fig. 4b), and two shifts on the branches leading to the clade of the 
superorder Decapodiformes and the clade of the suborder Incirata 
(Fig. 4c). The post K-Pg shift was detected around 30 Mya, in the branch 
leading to the Antarctic clade, which contains species of the genus 
Megaleledone, Thaumeledone, Graneledone, Praealtus, Velodona, and 
Pareledone. 

These results were comparable to those obtained from the random 
sample of 20 phylogenetic trees. All trees show evidence for a discrete 
shift on the branches leading to the Antarctic clade, after the K-Pg. 15 
trees show evidence for shifts on the branches leading to the clade of the 
superorder Decapodiformes and the clade of the suborder Incirata. From 
2345 trees, just 11 trees show evidence for a discrete shift on the branch 
leading to V. infernalis, before the K-Pg. Overall, BAMM results support 
the increase in coleoid diversification rate after the K-Pg (hypothesis 1) 
and the abrupt increase in the mid Cenozoic (hypothesis 2). However, 
BAMM shows that the diversification rate was also increasing before the 
K-Pg, a pattern that included abrupt shifts in rate. 

4. Discussion 

4.1. Divergence times 

This study dated the divergence of the Coleoidea from the Nauti-
loidea around the Early Devonian (~412 Mya). We also found relatively 
ancient divergence dates for the MRCA between Decapodiformes and 
Octopodiformes (Middle Triassic, ~241 Mya) and the split between 

Vampyromorpha and Octopoda (Early Jurassic ~ 199 Mya; Table 1); as 
well as for the MRCA of Decapodiformes (Early Cretaceous ~ 110 Mya). 
Tanner et al. (2017) found a slightly earlier split between Decap-
odiformes and Octopodiformes (Late Carboniferous or Permian) based 
on a phylogeny calibrated with several fossils and outgroups (Bivalvia, 
Gastropoda and Annelida), in spite of using different molecular clocks 
and markers. Our estimated divergence times are consistent with the 
fossil evidence for the existence of incirrate octopods and oegopsid 
squids during the Cretaceous (Fuchs et al., 2009; Tanabe et al., 2015). 
The Paleozoic origin of the Coleoidea inferred here has been widely 
documented in previous research, both based on paleontological evi-
dence and calibrated molecular clocks (Strugnell et al., 2006; Kröger 
et al., 2011; Tanner et al., 2017, Uribe and Zardoya, 2017). The MRCA 
for Octopodiformes and Decapodiformes clades showing the highest 
species richness are within the last 20 to 50 Mya, as previous studies 
reported for specific families and genera (Ibáñez et al., 2016; Ulloa et al., 
2017; Pardo-Gandarillas et al., 2018). Previous studies estimated earlier 
or more ancient divergence times for cephalopods compared to our 
study. Uribe and Zardoya (2017) estimated an earlier origin for 
Coleoidea, although their results could have been influenced by the fact 
that these authors used only two fossil calibration points and complete 
mitochondrial genomes, which evolve faster than nuclear genes. 
Another study (i.e., Strugnell et al., 2006) estimated a much more 
ancient origin for Coleoidea, using a fossil of Plesioteuthis from the Upper 
Jurassic (151 Mya) to calibrate the divergence between Ommas-
trephidae and other oegopsid squids. However, subsequent studies such 
as Fuchs et al. (2007), demonstrated that plesioteuthids belong to the 
clade Octopodiformes, and are considered an ancestor of modern octo-
puses. This fact, among others, may be in part related to the conflicting 
classifications of cephalopod fossils (see Kröger et al., 2011; Neige et al., 
2016), which have produced inconsistent divergence time estimates and 
thus, discordant conclusions regarding cephalopod evolution. Moreover, 
coleoid fossils are rare and often incomplete (Kröger et al., 2011), which 
hinders cataloguing them into a given clade. 

4.2. Diversification rates 

Our study demonstrate that the Coleoidea radiation started during 
the Middle Triassic. Their diversification rate pattern was variable – 
showing increasing rates over the Mesozoic and Cenozoic (Fig. 3, 
Fig. 4a). Furthermore, there were exceptional instances of increase in 
diversification rate before and after the K-Pg (Fig. 4b and c). The shifts 
that precede the K-Pg, were detected in the branch leading to 
V. infernalis and on the branches leading to the clade of the superorder 
Decapodiformes and the clade of the suborder Incirrata. The shift 
detected after the K-Pg occurred around 30 Mya during the Cenozoic, on 
the branch leading to the octopus Antarctic clade. 

The results from this study support the widely accepted idea sug-
gesting that many marine invertebrates and vertebrates accelerated 
their diversification process after the K–Pg period, possibly due to the 
empty habitats left by the groups that disappeared during the K–Pg 
extinction (Meredith et al., 2011; Sibert and Norris, 2015). However, our 
findings also suggest ancient events of increased diversification rates of 
coleoids before the K-Pg boundary. From a structural and functional 
point of view, coleoids may have been better equipped to deal with the 
environmental changes that occurred in the Late Mesozoic, prior to the 
K–Pg mass extinction, compared to the oldest cephalopods with external 
shells. Their reduced shell, hydrodynamic shape, and stronger mantle 
made coleoids faster, which constituted an advantage to colonize 
different habitats (Arkhipkin et al., 2012; Bizikov, 2004, 2008; Doguz-
haeva, 2012; Kröger et al., 2011; Mapes et al., 2010; Nishiguchi and 
Mapes, 2008; Reitner and Engeser, 1982; Sutton et al., 2016; Fuchs 
et al., 2016, Hanlon et al., 2018). These novel habitats might have 
imposed stronger selective pressures that triggered the increase in their 
diversification rates. This increase during the Cretaceous might have 
also been due to the disappearance of some predators (Iba et al., 2011; 

Fig. 3. Comparison plot between observed Lineages Though Time (LTT) for 
cephalopods and 10,000 simulated LTTs under a pure-birth process. Simulated 
trees were generated to have a species richness (840 taxa) equivalent to the 
presumed diversity of coleoid cephalopods, and then pruned randomly to the 
taxon sampling of this study. Black line represents the mean, and dashed lines 
are the CI for the LTT from the simulation under a pure birth process. Red line 
represents the LTT based on the MCCT tree. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Tanner et al., 2017). For example, the disappearance of the last groups of 
ichthyosaurs –considered natural predators of coleoids– during the 
Cenomian-Turonian anoxic event (Lomax, 2010; Molina, 2015; Fisher 
et al., 2016) could have released coleoids from an ecological constraint, 
exposing them to strong ecological competition with nektonic marine 
vertebrates during the Mesozoic (Tanner et al. 2017). On the other hand, 
during the Mid-Cenozoic, the separation of Antarctica from South 
America and Australia (Livermore et al. 2005) and the Antarctic ice- 
sheet formation (Zachos et al. 2001) isolated the Antarctic fauna 
including some octopus species (Livermore et al. 2005). Furthermore, 
octopuses evolved toward a holobenthic development (Ibáñez et al. 

2014, 2018) and faced the environmental changes associated to the 
following glaciations, which could promote species range fragmentation 
and, therefore, could promote the increase in diversification rates 
observed in the octopus Antarctic clade. This macroevolutionary process 
may explain the high levels of endemism of benthic octopuses today 
(Strugnell et al., 2008; Rosa et al., 2019). 

Our results support a pattern of increase in diversification rate since 
the origin of coleoids, associated with the presence of discrete shifts to 
increase in diversification (Fig. 3, Fig. 4). In any case, it should be noted 
that our phylogeny represents a low fraction (~20%) of the large di-
versity of extant cephalopods (~840 species, Hoving et al., 2014), and 

Fig. 4. Diversification rate pattern inferred from BAMM analysis. a, the plot shows a pattern of increasing diversification rates over coleoid radiation. The red line 
shows the averaged diversification rate at any time, estimated from all phylogenetic branches. The shading colour density denotes the confidence on evolutionary 
rate estimation. b, estimated speciation rates across phylogenetic branches given the model with represented in the 17% of the posterior probability. c, estimated 
speciation rates across phylogenetic branches given the model represented in the 16% of the posterior probability. Branch colours indicate speciation rate values 
(blue = low, red = high) and red circles on branches indicate the discrete shifts in diversification rate. Vertical black line indicates the K-Pg boundary. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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unsampled species are not missing at random across clades. Currently, 
some clades (e.g., Myopsida) are sampled much better than others (e.g., 
Oegopsida, see Table 2). Nonetheless, it is worth mentioning that our 
methods (e.g. MCCR, LTT) allowed us to minimize the putative esti-
mation errors associated with incomplete taxon sampling, with the 
caveat that these techniques assume that missing taxa are absent from 
the phylogeny at random. However, we accounted for the non- 
randomness of missing species across clades by accounting for the or-
der’s sampling fraction in BAMM analyses. Future studies with better 
sampling of the recognized cephalopod species will improve certainty in 
macroevolutionary inferences. Above all, our work supports that ceph-
alopod diversity is primarily the result of a rapid diversification of 
coleoids over time which include exceptional episodes of increased 
diversification rate before and after the K-Pg boundary. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

We would like to thank Fabiola Peña for her help with lab work, and 
Darren Stevens, Sadie Mills, Unai Markaida, Cesar Salinas, Vlad Lapti-
khovsky and Carmen Yamashiro for tissue samples of octopuses and 
squids from New Zealand, Peru, Mexico and Falkland/Malvinas Islands. 
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Ibáñez, C.M., Pardo-Gandarillas, M.C., Peña, F., Gleadall, I.G., Poulin, E., Sellanes, J., 
2016. Phylogeny and biogeography of Muusoctopus (Cephalopoda: 
Enteroctopodidae). Zool. Scr. 45, 494–503. https://doi.org/10.1111/zsc.12171. 
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Klug, C., Kröger, B., Kiessling, W., Mullins, G.L., Servais, T., Frýda, J., Turner, S., 2010. 
The Devonian nekton revolution. Lethaia 43(4), 465–477. https://doi.org/10.1111/ 
j.1502-3931.2009.00206.x. 

Klug, C., Landman, N.H., Fuchs, D., Mapes, R.H., Pohle, A., Guériau, P., Hoffmann, R., 
2019. Anatomy and evolution of the first Coleoidea in the Carboniferous. Commun 
Biol. 2 (1), 1–12. https://doi.org/10.1038/s42003-019-0523-2. 

Kobayashi, T., 1954. Izumonauta, a new genus of the Argonautinae, with a note on their 
rare but gregarious fossil occurrence, Japan. J. Geol. Geogr. 25, 21–34. 
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Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MrBayes 3.2: efficient 
Bayesian phylogenetic inference and model choice across a large model space. Syst. 
Biol. 61 (3), 539–542. https://doi.org/10.1093/sysbio/sys029. 

Rosa, R., Pissarra, V., Borges, F.O., Xavier, J., Gleadall, I.G., Golikov, A., Bello, G., 
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