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Abstract:  This paper investigates the background to Leibniz’s doctrine of the fictionality

of infinitesimal magnitudes and the consequences the doctrine has for his account of the

foundations of the calculus.  It first traces the connection between Leibniz’s doctrine of

“incomparably small” magnitudes and Hobbes’s doctrine of conatus, particularly as it is

applied to the study of geometric figures.  The concluding sections consider the

application of this doctrine to disputes about the reality of infinitesimal magnitudes.

The status of infinitesimals in Leibniz’s philosophy of mathematics is an issue whose

resolution is not without difficulty.  In many contexts Leibniz’s account of his calculus

differentialis is phrased in terms that are most readily interpreted as implying the real

existence of infinitely small magnitudes.  In other places, he claims that there are, in

actual fact, no infinitely small magnitudes and the device of infinitesimals is simply a

convenient fiction, useful for stating and deriving results, but without any serious

ontological import.  One can therefore sensibly ask whether Leibniz truly believed in the
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reality of infinitesimal magnitudes, but thought that the central results of his calculus

differentialis might be formulated and derived by means that did not presuppose the

reality of the infinitesimal.  Pursuing this sort of interpretive strategy would obviously

require that Leibniz’s frequent claims about the fictionality of the infinitesimal be taken a

something less than face value.  That is not a decisive problem for an interpretation of

Leibniz as a realist about infinitesimals, but it does suggest that one ought at least to

consider the prospects for seeing Leibniz as committed to the view that the infinitesimal

has the status of a “well founded fiction.”  I take Leibniz’s claims about the fictionality of

the infinitesimal to be his considered view on the subject, although I am not convinced

that he held consistently to a “fictionalist” position from his earliest writings on the

calculus.

My purpose here is to trace what I take to be the origins of Leibniz’s notion of the

fictional infinitesimal, which I believe can be found in Hobbes’s doctrine of conatus, and

particularly the application that Hobbes made of this concept in the solution of geometric

problems of tangency, quadrature and arclength determination – precisely the sorts of

problems that the Leibnizian calculus was designed to solve.  Having shown the role that

the conatus concept plays in Hobbes’s approach to mathematics, I will argue that some

salient features of it appear in Leibniz’s formulation of the calculus.  In particular, the

notion that conatus is a finite, but negligibly small, quantity is significant.  Ultimately, I

think that Hobbes’s notion of conatus, or at least a near descendent of it, appears in

Leibniz’s  claim that infinitesimal magnitudes are “well founded fictions” that can, in

principle, be replaced by the consideration of finite quantities.  In this context, Leibniz’s

notion of “incomparably small” quantities plays a central role, and I think it can be shown
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that the Leibnizian theory of the incomparably small (yet finite) magnitude has its roots

in the Hobbesian of conats.  I will briefly outline the role conatus in the Hobbesian

approach to geometry; with this material in hand, I will investigate some of Leibniz’s

pronouncements on the foundations of his calculus with the aim of showing that these

owe a significant debt to Hobbes’s proposals.

1. Hobbes, Conatus, and the Mathematics of Motion

Hobbes first introduced the concept of conatus in his 1655 treatise De Corpore --

a work presented as the first part of the elements of philosophy and containing Hobbes’s

doctrines on the nature of body as well as his exposition of a thoroughly materialistic

philosophy of mathematics.  As Hobbes defines it, conatus is essentially a point motion,

or motion through an indefinitely small space:  “conatus” he declares, “is motion through

a space and a time less than any given, that is, less than any determined whether by

exposition or assigned by number, that is, through a point.” (Hobbes  [1839-45] 1966a, 1:

177)  Hobbes employs his idiosyncratic conception of points here, in which a point is an

extended body, but one sufficiently small that its magnitude is not considered in a

demonstration.  In explicating the definition of conatus he therefore remarks that “it

should be recalled that by a point is not understood that which has no quantity,  or which

can by no means be divided (for nothing of this sort is in the nature of things), but that

whose quantity is not considered, that is,  neither its quantity nor any of its parts are

computed in demonstration, so that a point is not taken for indivisible, but for undivided.

And as also an instant is to be taken as an undivided time, not an indivisible time.”
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(Hobbes [1839-45] 1966a 1: 177-8)  The result is that conatus is a kind of “tendency

toward motion” or a striving to move in a particular direction.

This definition allows for a further concept of impetus, or the instantaneous

velocity of a moving point; the velocity of the point at an instant can be understood as the

ratio of the distance moved to the time elapsed in a conatus.  In Hobbes’s terms “impetus

is this velocity [of a moving thing] but considered in any point of time in which the

transit is made.  And so impetus is nothing other than the quantity or velocity of this

conatus.” (Hobbes [1839-45] 1966a 1:178)  The concepts of conatus and impetus are

basic to Hobbes’s analysis of motion, and it is not great exaggeration to say that his

whole program for natural philosophy, which he deemed the true science of motion, is

drawn from his account of conatus and impetus.

The concepts of impetus and conatus can be applied to the case of geometric

magnitudes as well as to moving bodies.  Because Hobbes held that geometric

magnitudes are generated by the motion of points, lines, or surfaces, he also held that one

could inquire into the velocities with which these magnitudes are generated, and this

inquiry can be extended to the ratios between magnitudes and their generating motions.

For example, take a curve to be traced by the motion of a point, and at any given stage in

the generation of the curve, this generating point will have a (directed) instantaneous

velocity.  This, in turn, can be regarded as the ratio between the indefinitely small

distance covered in an indefinitely small time; this ratio will be a finite magnitude which

can be expressed as the inclination of the tangent to the curve at the point.  Consider, for

instance the curve αβ as in figure 1.  The conatus of  its generating point at any instant

will be the “point motion” with which an indefinitely small part of the curve is generated;
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the impetus at any stage in the curve’s production will be expressed as the ratio of the

distance covered to the time elapsed in the conatus.  Represent the time by the x-axis and

the distance moved by the y-axis.  Then (assuming time to flow uniformly), the

instantaneous impetus will be the ratio between the instantaneous increment along to the

y-axis to the increment along the x-axis.  The tangent to the curve at the point p is the

right line that continues or extends the conatus a p; or, equivalently, the tangent is the

dilation or expansion of the point motion into a right line.

It is important to observe here that the tangent is constructed as a finite ratio

between two quantities that, in themselves, are small enough to be disregarded.  That is to

say, the ratio between two “inconsiderable” quantities may itself be a considerable

quantity.  Hobbes emphasizes this feature of his system when he stresses that points may

be larger or smaller than one another, although in themselves they are quantities too small

to be considered in a geometric demonstration.  Thus, in discussing the comparisons that

may be made between one conatus and another, Hobbes declares: “as a point may be

compared with a point, so a conatus can be compared with a conatus, and one may be

found to be greater or less than another.  For if the vertical points of two angles are

compared to one another, they will be equal or unequal in the ratio of the angles

themselves to one another; or if a right line cuts many circumferences of concentric

circles, the points of intersection will be unequal in the same ratio which the perimeters

have to one another.” ( [1839-45] 1966a, 1: 178)

Hobbes’s concepts of conatus and impetus can also be applied to the general

problem of quadrature by analyzing the area of a plane figure as the product of  a moving

line and time.   Hobbes himself was eager to solve problems of quadrature (most notably
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the quadrature of the circle), and it is here that his concept of conatus is put most fully to

work.  Indeed, it is no exaggeration to say that the third part of De Corpore (which bears

the title “On the Ratios of Motions and Magnitudes”)  is Hobbes’s attempt to furnish a

general method for finding quadratures.  In the very simplest case, the whole impetus

imparted to a body throughout a uniform motion is representable as a rectangle, one side

of which is the line representing the instantaneous impetus while the other represents the

time during which the body is moved.  More complex cases can then be developed by

considering non-uniform motions produced by variable impetus.   In chapters 16 and 17

of De Corpore Hobbes approached a variety of different quadrature and tangency

problems, and in  so doing he presented a number of important results that belong to the

“pre-history” of the calculus.  Of special interest in this context is Hobbes’s appropriation

of important results from Bonaventura Cavalieri’s Exercationes Geometricae Sex, which

he set forth in chapter 17 of De Corpore as an investigation into the area of curvilinear

figures.

[Figure 2]

The subject of chapter 17 is “deficient figures,” and it presents something very

much like an early analysis of integration.  In Hobbes’s parlance the deficient figure

ABDGA in figure 2 is produced by the motion of the right line BD through BA, while BD

diminishes to a point at A.  The “complete figure” corresponding to the deficient figure is

the rectangle ABDC, produced by the motion of BC through AB without diminishing.

The complement of the deficient figure is DGAC, the figure that, when added to the

deficient figure, makes the complete figure.  Hobbes proposes to determine the ratio of

the area of the deficient figure to its complement, given a specified rate of decrease of the
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quantity BD.  He concludes that the ratio of the deficient figure to its comp0lement is the

same as the ratio between corresponding lines in the deficient figure and their

counterparts in the complement.  As he states the theorem in article 2 of chapter 17:

A deficient figure, which is made by a quantity continually decreasing until it

vanishes, according to ratios everywhere proportional and commensurable, is to

its complement as the ratio of the whole altitude to an altitude diminished at any

time is to the ratio of the whole quantity which describes the figure, to the same

quantity diminished in the same time.

Thus, if the rate of diminution of BD is uniform the line AD will be a right line (the

diagonal of the rectangle), and the deficient figure will be to its complement in the ratio

of one to one.  In more complex cases, as when BD decreases as the square of the

diminished altitude, the area of the deficient figure will be twice that of its complement.

And, in general, if the line BD decreases as the power n, the ratio of the deficient figure

to its complement will be n:1.

In the fourth of his six Exercationes Geometricae Cavalieri pursued a result that

historians of mathematics generally characterize as the attempt to prove the geometric

equivalent of the theorem that the integral from zero to a of xndx is equal to a(n+1)/(n+1).

Except for differences in diagrams and terminology, Cavalieri’s fourth Exercitatio

delivers the same results as Hobbes’s account of deficient figures.  The central theorem,

which is the analogue of the result we just saw stated by Hobbes, reads:

[Figure 3]
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In any parallelogram such as BD [as in Figure 2] with the base CD as regula, if

any parallel to CD such as EF is taken, and if the diameter AC is drawn, which

cuts the line EF in G, then as DA is to AF, so CD or EF will be to FG.  And let

AC be called the first diagonal.  and again as DA2 is to AF2, let EF be to FH, and

let this be understood in all the parallels to CD, so that all of these homologous

lines HF terminate in the curve AHC.  Similarly, as DA3 is to AF3, let also EF be

to FI, and likewise in the remaining parallels, to describe the curve CIA.  And as

AD4 is to AF4, let EF be to FL, and likewise in the remaining parallels to describe

the curve CLA.  Which procedure can be supposed continued in other cases.  Then

CHA is called the second diagonal, CIA the third diagonal, CLA the fourth

diagonal, and so forth.  Similarly the triangle AGCD is called the first diagonal

space of the parallelogram, the trilinear figure AHCD is the second diagonal space

of the parallelogram, AICD the third, ALCD the fourth, and so on.  I say therefore

that the parallelogram BD is twice the first space, triple the second space,

quadruple the third space, quintuple the fourth space, and so forth.  (Cavalieri

1647, 279).

Hobbes and Cavalieri employed different proof procedures in attempting to establish this

result.  Although I lack the time to go into these in detail, it is worth observing that

Hobbes’s procedure (at least in some of its guises) employs the idea of a conatus or the

“aggregate of the velocities” whereby lines in a figure are generated.  There is enough

similarity between Hobbes and Cavalieri here to warrant the conclusion that Hobbes

borrowed quite heavily from the Italian mathematician.  Nevertheless, Hobbes did re-cast
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some of Cavalieri’s language in a way that emphasizes the consideration of point motion

or conatus, and Hobbes evidently saw himself as reforming Cavalieri’s doctrines to bring

them within the purview of what he termed his “method of motions.”

It is well known that Leibniz was profoundly influenced by his reading of

Hobbes, and he seems to have been particularly enamored of the Hobbesian concept of

conatus.  In his famous 1670 letter to Hobbes, Leibniz declares the English philosopher to

be “wholly justified” in “the foundations [he has] laid concerning the abstract principles

of motion” (Leibniz to Hobbes, 22 July, 1670; GP, 7: 573 ).  To the extent that the

concept of conatus is the basis for Hobbes’s analysis of motion, this endorsement

suggests that Leibniz was ready to follow Hobbes in using the concept for the analysis of

all phenomena produced by motion.  Indeed, scholars today are generally  accept that

“Leibniz’s early writings on natural philosophy are virtually steeped in De Corpore”

(Bernstein 1980, 29).  In particular, Leibniz’s reading of Hobbes appears to have been the

source for much of his (admittedly limited) mathematical knowledge before his stay in

Paris in the 1670s (Hoffman 1972, 6-8).

The clearest evidence of Hobbes’s influence on Leibniz is in his essay  Theoria

motus abstracti, where Leibniz employs the concept of conatus to investigate the nature

of motion and eventually arrives at the remarkable conclusion that every body is a

momentary mind.   In a 1671 letter to Henry Oldenburg, Leibniz announced that his

theory of abstract motion provides the basis for the solution of any number of

mathematical and philosophical puzzles.  The theory, he claimed, “explains the hitherto

unresolved difficulties of continuous composition, confirms the geometry of indivisibles

and arithmetic of infinities; it shows that there is nothing in the realm of nature without
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parts; that the parts of any continuum are in fact infinite; that the theory of angles is that

of the quantities of unextended bodies; that motion is stronger than motion, and conatus

stronger than conatus -- however, conatus is instantaneous motion through a point, and so

a point may be greater than a point” (Oldenburg 1965-77, 8: 22).

The “geometry of indivisibles” and the “arithmetic of infinities” to which Leibniz

refers are, I take it, the works of Cavalieri and John Wallis.  Cavalieri’s method of

indivisibles is mentioned explicitly in section six of the Theoria motus abstracti, as a

theory whose “truth is obviously demonstrated so that we must think of certain

rudiments, so to speak, or beginnings of lines and figures, as smaller than any given

magnitude whatever.” (GP 4: 228).  Wallis’s 1655 treatise Arithmetica Infinitorum,

although not mentioned explicitly in the text, is evidently referred to in the letter to

Oldenburg when Leibniz refers to the “arithmetic of infinities”.  In light of this, it is no

great interpretive leap to see Leibniz connecting the doctrine of conatus with the classic

problem of quadrature, just as Hobbes had done, and thus to find part of the origin of the

calculus in Leibniz’s close reading of De Corpore.

It would doubtless be going to far to claim that the whole of Leibniz’s calculus is

simply the application of Hobbes’s ideas.  It is well known that Leibniz’s mathematical

thought was also strongly influenced by Galileo’s approach to the geometry of

indivisibles, for example, and the influence of Huygens cannot be overlooked.  Nor, for

that matter, can Pascal’s investigations into infinite sums and differences.  All of these

are, without question, part of the background to Leibniz’s calculus.  Nevertheless,  we

can agree that Hobbes was one among many whose writings stimulated the development

of the Leibnizian approach to the calculus.   However, there is one important difference
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between the Leibnizian and Hobbesian conceptions of conatus that is significant:

Leibniz’s language (at least in the Theoria motus abstracti) strongly implies that conatus

be a literally infinitesimal quantity, while Hobbes regards it as having finite magnitude,

but one so small as to be disregarded.  In the end, however, Leibniz adopted a doctrine

not far removed from Hobbes’s.

2. Incomparable Magnitudes and the Question of Rigor

Traditional criteria of rigorous demonstration forbid the use of infinitary methods, and

the standard formulation of Leibniz’s calculus certainly seems to run afoul of such

restrictions.  Mysterious terms dx and dy appear in equations for curves and increments,

only to vanish when their work is done, seeming to hover between something and

nothing.  It is therefore no great surprise that “traditionalist” opponents would make a

case against the calculus differentialis, charging Leibniz and his associates with violating

standards of rigor that guarantee the security and demonstrative status of mathematics.  In

replying to these critics, Leibniz employed something very much like Hobbes’s notion of

points and conatus as finite but negligible quantities, although he phrased his defense in

terms of “incomparably small” magnitudes.

In reply to the criticisms voiced by Bernard Nieuwentijt, who had held that the

infinitesimal quantities dx and dy were illegitimately dismissed from calculations,

Leibniz declared such quantities “incomparably small” and legitimate objects of

mathematical study.  To Nieuwentijt’s requirement that only those quantities are equal

whose difference is zero, Leibniz insisted

I think that those things are equal not only whose difference is absolutely

nothing, but also whose difference is incomparably small; and although

this difference need not be called absolutely nothing, neither is it a
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quantity comparable with those whose difference it is.  Just as when you

add a point of one line to another line or a line to a surface you do not

increase the magnitude, it is the same thing if you add to a line a certain

line, but one incomparably smaller.  Nor can any increase be shown by

any such construction.  (GM, 5: 322)

There is an obvious parallel between such “incomparably small” elements of lines or

surfaces Hobbes’s conception of points, for it is exactly the hallmark of Hobbes’s points

that -- though finite -- they are too small to be considered in any demonstration.

Leibniz’s  preference here for the language of the incomparable rather than the

infinitesimal raises the question of whether such incomparable magnitudes are to be

thought of as literally infinitesimal or whether they should be treated as finite but

negligible quantities in the manner of Hobbes’s points.

At first sight, one might take Leibniz’s reply to Nieuwentijt as defending the

reality of infinitesimals, seeing the term “incomparably small” as a kind of euphemism

for “infinitesimal.”  But I think such an interpretation ultimately fails.  Leibniz declares

that it is enough to show that incomparably small quantities can be justly neglected in a

calculation, and he refers to certain “lemmas communicated by me in February of 1689”

for the full justification of this procedure (GM 5: 322).  These lemmas of 1689 are

contained in Leibniz’s Tentamen de motuum coelestium causis (GM, 6: 144- 160).  But

when we turn to them for enlightenment, two points become tolerably clear.  First, these

“incomparable” quantities were intended explicitly to avoid references to infinitesimals

and instead to replace infinitesimal magnitudes with finite differences sufficiently small

to be ignored in practice.  Second, the doctrine of the incomparable has a very strong

analogy with Hobbes’s treatment of points, conatus, and impetus.  The paragraph

expounding these lemmas opens with the declaration that
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I have assumed in the demonstrations incomparably small quantities, for

example the difference between two common quantities which is

incomparable with the quantities themselves.  Such matters as these, if I

am not mistaken, can be set forth most lucidly in what follows.  And then

if someone does not want to employ infinitely small quantities, he can take

them to be as small as he judges sufficient to be incomparable, so that they

produce an error of no importance and even smaller than any given [error].

Just as the Earth is taken for a point, or the diameter of the Earth for a line

infinitely small with respect to the heavens, so it can be demonstrated that

if the sides of an angle have a base incomparably less than them, the

comprehended angle will be incomparably less than a rectilinear angle,

and the difference between the sides will be incomparable with the sides

themselves; also, the difference between the whole sine, the sine of the

complement, and the secant will be incomparable to these differences.

(GM, 6: 150-1)

The use intended for such incomparably small magnitudes is to avoid disputes

about the nature or existence of infinitesimal quantities, and Leibniz holds that “it is

possible to use ordinary [communia] triangles similar to the unassignable ones, which

have a great use in finding tangents, maxima, minima, and for investigating the curvature

of lines.” (GM, 6: 150)  In other words, the lemmas on incomparable magnitudes are to

serve as a foundation for the calculus which permits the talk of infinitesimals to be

reinterpreted in terms of incomparable (but apparently finite) differences.  These lemmas

loom large in Leibniz’s writings on the foundations of the calculus, since he almost

invariably refers back to them in later discussions on the nature of the infinitesimal.  It is

also significant that the incomparably small satisfies Hobbes’s definition of a geometric

point -- it is a quantity sufficiently small that its magnitude cannot be regarded in a

demonstration.
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3. Fictional Infinitesimals and Incomparable Magnitudes.

When we turn to Leibniz’s treatment of the foundations of the calculus after 1700, the

theme of the fictionality of the infinitesimal becomes more clearly defined.  There were

two controversies in the Parisian Academie des Sciences that drew Leibniz into a

discussion of the nature of infinitesimals, and in both cases he elaborated a theory in

which the infinitesimal turns out to be a fictional entity, albeit a fiction that is sufficiently

well-grounded that it cannot lead from true premises to a false conclusion.  The first of

these controversies was initiated by Michel Rolle, who argued that the notion of an

infinitesimal was not only inconsistent, but that the calculus that employed it could lead

to error.  The second controversy concerned the logarithms of negative numbers and

pitted Leibniz against Jean Bernoulli.  I lack the time to go into either of these in detail,

but Leibniz’s pronouncements offer a chance to see the ultimate status of his theory of

the infinitesimal.

In a famous letter to M. Pinson, parts of which were published in the Journal de

Sçavans in 1701,  Leibniz offered his opinion on the controversy initiated by Rolle.  In

the letter,  he responded to an anonymous criticism of the infinitesimal which Abbé

Gouye had published in the Journal.  Leibniz argued in reply that

there is no need to take the infinite here rigorously, but only as

when we say in optics that the rays of the sun come from a point

infinitely distant, and thus are regarded as parallel.  And when

there are more degrees of infinity, or infinitely small, it is as the

sphere of the earth is regarded as a point in respect to the distance

of the sphere of the fixed stars, and a ball which we hold in the

hand is also a point in comparison with the semidiameter of the
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sphere of the earth.  And then the distance to the fixed stars is

infinitely infinite or an infinity of infinities in relation to the

diameter of the ball.  For in place of the infinite or the infinitely

small we can take quantities as great or as small as is necessary in

order that the error will be less than any given error.   In this way

we only differ from the style of Archimedes in the expressions,

which are more direct in our method and better adapted to the art

of discovery.  (GM, 4: 95-96)

These remarks are of a piece with Leibniz’s earlier claims about the eliminability of

infinitesimal magnitudes:  he denies that the calculus really needs to rely upon

considerations of the infinite and again insists that it can be based on a procedure of

taking finite but “negligible” errors that can be made as small as desired.  And again, it is

worth observing that Hobbes used essentially the same language, comparing the earth to a

point in comparison to the heavens.

The more ardent partisans of the infinitesimal (notably Jean Bernoulli, Varignon,

and the Marquis de L’Hôpital) were deeply concerned by Leibniz’s apparent concession

to the critics of the calculus.  Varignon wrote to Leibniz in November of 1701 requesting

a clarification of Leibniz’s views on the reality of infinitesimals and expressing the fear

that the publication of the letter to M. Pinson had done harm to the cause because some

had taken him to mean that the calculus was inexact and capable only of providing

approximations.  Varignon therefore requested “that you send us as soon as possible a

clear and precise declaration of your thoughts on this matter.” (Varignon to Leibniz, 28

November, 1701, GM, 4: 90).

In his reply to Varignon Leibniz issued a summary statement of his views on the

infinite and its role in the calculus.  This statement brings together themes we have

already seen:  the fictional nature of infinitesimals, the possibility of basing the calculus
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upon a science of incomparably small (but still finite) differences, and the equivalence of

the new methods and the Archimedean techniques of exhaustion.  After assuring

Varignon that his intention was “to point out that it is unnecessary to make mathematical

analysis depend on metaphysical controversies or to make sure that there are lines in

nature which are infinitely small in a rigorous sense” (Leibniz to Varignon, 2 February,

1702; GM 4: 91), Leibniz once again suggests that incomparably small magnitudes be

taken in place of the genuine infinite.  These incomparables would provide “as many

degrees of incomparability as one may wish;” and although they are really finite

quantities they can still be neglected, in accordance with the notorious “lemmas on

incomparables” from the Leipzig Acta. (Leibniz to Varignon 2 February, 1702; GM, 4:

91-2).  Leibniz’s account of the nature of infinitesimals thus brings us again to the

lemmas on incomparable magnitudes in the Tentamen de motuum coelestium causis.  But,

as I have noted, this account of the incomparably small seems very much of a piece with

Hobbes’s notion of conatus.  It is characteristic of the fictional infinitesimal that it is a

“well founded” fiction, by which Leibniz means that indulgence in the fiction will not

produce error.  As Leibniz explained to Varignon, both infinitesimal magnitudes and

imaginary roots have a foundation in the nature of things, and the world is structured as if

there were such things, though in reality there are none.  Indulging in the fiction is

therefore harmless, and even useful, since it encourages economy of expression and can

stimulate research into new results.

The full scope of this “fictionalist” reading of the infinite was not made widely

known, largely because Leibniz and his associates had reason to fear that any public

retreat from a full commitment to the reality of the infinitesimal would complicate the

already difficult battle for the acceptance of the calculus. As Leibniz explained in a late

letter “When our friends were disputing in France with the Abbé Gallois, father Gouye

and others, I told them that I did not believe at all that there were actually infinite or

actually infinitesimal quantities;  the latter, like the imaginary roots of algebra √-1 were
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only fictions, which however could be used for the sake of brevity or in order to speak

universally. . . But as the Marquis de l’Hôpital thought that by this I should betray the

cause, they asked me to say nothing about it, except what I already had said in the

Leipzig Acta.  (Leibniz to Dangicourt, 11 September 1716; Dutens, 3: 500-501)

In correspondence with Des Bosses, Leibniz added that “Philosophically speaking, I no

more admit magnitudes infinitely small than infinitely great . . . .  I take both for mental

fictions, as more convenient ways of speaking, and adapted to calculation, just like

imaginary roots are in algebra.  I once demonstrated that these expressions have a great

use both in abbreviating thought and aiding discovery, and that they cannot lead to error,

since in place of the infinitely small one may substitute [a quantity] as small as one

wishes, and since any error will always be less than this, it follows that no error can be

given.  But the Reverend Father Gouyé, who objected, seems not to have understood me

adequately.” (Leibniz to Des Bosses, 11 March, 1706; GP, 2: 305)

The final piece in the puzzle of Leibniz’s theory of the infinitesimal, and one that

leads us back to Hobbes, is the late note Observatio quod rationes sive proportiones non

habeant locum circa quantitates nihilo minores, et de vero senso methodi infinitesimalis,

which appeared in the Acta Eruditorum in April of 1712.  It was sparked by a controversy

over the nature of ratios between positive and negative quantities, which grew to include

the cases of logarithms and roots of negative numbers.  Jean Bernoulli (who was also a

firm believer in the reality of infinitesimals and a chief partisan in favor of the Leibnizian

calculus in the Academie) held that logarithms of negative numbers were the same as

those of positive numbers, so that the logarithm of − a is the same a the logarithm of a.

Leibniz treated the issue of negative quantities in ratios, logarithms, and roots as fictions

that could be harmlessly employed in calculation, but which did not correspond to

anything mathematically real.  In Leibniz’s view, there is no ratio of +1 to − 1 (as

Bernoulli required), since otherwise it would be the same as the ratio of −1 to +1.
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Likewise, the fictionality of the infinitesimal is stated in language that seems to have

been almost borrowed from Hobbes.

In objecting to the notion that there could be a proper ratio between positive and

negative quantities, Leibniz remarked:

just as I have denied of the reality of a ratio, one of whose terms is less than zero,

I equally deny that there is properly speaking an infinite number, or an infinitely

small number, or any infinite line or a line infinitely small.... The infinite, whether

continuous or discrete, is not properly a unity, nor a whole, nor a quantity, and

when by analogy we use it in this sense, it is a certain facon de parler; I should

say that when a multiplicity of objects exceeds any number, we nevertheless

attribute to them by analogy a number, and we call it infinite.  And thus I once

established that when we call an error infinitely small, we wish only to say an

error less than any given, and thus nothing in reality.  And when we compare an

ordinary term, an infinite term, and one infinitely infinite, it is exactly as if we

were to compare, in increasing order, the diameter of a grain of dust, the diameter

of the earth, and that of the sphere of the fixed stars....(GM V, 389)

One striking feature of this late publication is Leibniz’s reminiscence about his Paris

period.  Leibniz recalls his encounters with the work of Arnauld, Wallis, and Joachim

Jung in the 1670s, and it is precisely during this period that Leibniz was working on the

Theoria motus abstracti and still very much under the influence of Hobbes.  As Marc

Parmentier has put it, “the first lines of his article incline one to think that the recent

polemic [over the nature of ratios] had revived a personal recollection that forty years of

intense diplomatic, scientific, and historical activity had not been able to erase, and which

suddenly came into his memory with its original clarity” (423).
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4. Conclusions.

This very brief account of Leibniz’s doctrine of the ficitionality of the infinitesimal raises

perhaps more questions than it answers.  I would like to close by considering two

important consequences of Leibniz’s doctrine of the fictional infinitesimal. The first is

the question of how Leibniz might guarantee that the infinitesimal is, indeed, a well-

founded fiction.  The second, and related, issue is whether there is a stable conception of

mathematical that underlies Leibniz’s writings on the calculus.

A fiction is well-founded in the Leibnizian sense when it does not lead us astray,

so that indulgence in the fiction is harmless.  The basic idea here seems to be something

to the effect that we can “speak with the vulgar” when we employ the language of the

infinitesimal, but “think with the learned” when we recognize that there really are no

such things.  Yet we still stand in need of some sort of guarantee that we will not, in fact,

be led astray.  In the mathematical context, this means that we need some kind of proof to

the effect that infinitesimals can always, at least in principle, be eliminated and reasoning

that depends on them can be replaced by reasoning that considers only finite differences

between finite quantities.  Leibniz often makes grand programmatic statements to the

effect that derivations which presuppose infinitesimals can always be re-cast as

exhaustion proofs in the style of Archimedes.  But Leibniz never, so far as I know,

attempted anything like a general proof of the eliminability of the infinitesimal, or offered

anything approaching a universal scheme for re-writing the procedures of the calculus in

terms of exhaustion proofs.  The closest thing we have are the notorious “lemmas on

incomparable magnitudes” from 1689, but these are really more promissory notes with a

serious admixture of hand-waving rather than rigorous proofs.  What, then, are we to

make of Leibniz’s confidence that the infinitesimal is a well-founded fiction?  He was

certainly aware that some infinitesimal arguments could lead to paradox and

contradiction, but it is unclear whether he had a surefire way of avoiding error.
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A related issue is what the Leibnizian conception of mathematical rigor really

looks like.  As classically understood, a rigorous argument is one that begins with

transparently true first principles, proceeds by valid inference procedures, and deals only

with objects that are  clearly conceived.  It is far from clear whether Leibniz would allow

that the proof procedures of the calculus are, in fact, rigorous in this sense.  After all, the

infinitesimal is not the sort of thing we can conceive clearly, and it seems a bit odd to

think that there might be transparently true first principles that deal with merely fictional

objects.  In the end, then, we might ask whether classifying infinitesimals as “useful

fictions” can really deflect the criticism of the calculus which characterizes it as

unrigorous.  This is not an issue I’m in any position to resolve at the moment, and will

leave it for another day


