On the Generation of Animals

. . .

Semen, then, is a compound of spirit (pneuma) and water, and the former is hot air (aerh); hence semen is liquid in its nature because it is made of water. What Ctesias the Cnidian has asserted of the semen of elephants is manifestly untrue; he says that it hardens so much in drying that it becomes like amber. But this does not happen, though it is true that one semen must be more earthy than another, and especially so with animals that have much earthy matter in them because of the bulk of their bodies. And it is thick and white because it is mixed with spirit, for it is also an invariable rule that it is white, and Herodotus does not report the truth when he says that the semen of the Aethiopians is black, as if everything must needs be black in those who have a black skin, and that too when he saw their teeth were white. The reason of the whiteness of semen is that it is a foam, and foam is white, especially that which is composed of the smallest parts, small in the sense that each bubble is invisible, which is what happens when water and oil are mixed and shaken together, as said before. (Even the ancients seem to have noticed that semen is of the nature of foam; at least it was from this they named the goddess who presides over union.)

This then is the explanation of the problem proposed, and it is plain too that this is why semen does not freeze; for air will not freeze.

3

The next question to raise and to answer is this. If, in the case of those animals which emit semen into the female, that which enters makes no part of the resulting embryo, where is the material part of it diverted if (as we have seen) it acts by means of the power residing in it? It is not only necessary to decide whether what is forming in the female receives anything material, or not, from that which has entered her, but also concerning the soul in virtue of which an animal is so called (and this is in virtue of the sensitive part of the soul)—does this exist originally in the semen and in the unfertilized embryo or not, and if it does whence does it come? For nobody would put down the unfertilized embryo as soulless or in every sense bereft of life (since both the semen and the embryo of an animal have every bit as much life as a plant), and it is productive up to a certain point. That then they possess the nutritive soul is plain (and plain is it from the discussions elsewhere about soul why this soul must be acquired first). As they develop they also acquire the sensitive soul in virtue of which an animal is an animal. For e.g. an animal does not become at the same time an animal and a man or a horse or any other particular animal. For the end is developed last, and the peculiar character of the species is the end of the generation in each individual. Hence arises a question of the greatest difficulty, which we must strive to solve to the best of our ability and as far as possible. When and how and whence is a share in reason acquired by those animals that participate in this principle? It is plain that the semen and the unfertilized embryo, while still separate from each other, must be assumed to have the nutritive soul potentially, but not actually, except that (like those unfertilized embryos that are separated from the mother) it absorbs nourishment and performs the function of the nutritive soul. For at first all such embryos seem to live the life of a plant. And it is clear that we must be guided by this in speaking of the sensitive and the rational soul. For all three kinds of soul, not only the nutritive, must be possessed potentially before they are possessed in actuality. And it is necessary either (1) that they should all come into being in the embryo without existing previously outside it, or (2) that they should all exist previously, or (3), that some should so exist and others not. Again, it is necessary that they should either (1) come into being in the material supplied by the female without entering with the semen of the male, or (2) come from the male and be imparted to the material in the female. If the latter, then either all of them, or none, or some must come into being in the male from outside.

Now that it is impossible for them all to preexist is clear from this consideration. Plainly those principles whose activity is bodily cannot exist without a body, e.g. walking cannot exist without feet. For the same reason also they cannot enter from outside. For neither is it possible for them to enter by themselves, being inseparable from a body, nor yet in a body, for the semen is only a secretion of the nutriment in process of change. It remains, then, for the reason alone so to enter and alone to be divine, for no bodily activity has any connexion with the activity of reason.

Now it is true that the faculty of all kinds of soul seems to have a connexion with a matter different from and more divine than the so-called elements; but as one soul differs from another in honour and dishonour, so differs also the nature of the corresponding matter. All have in their semen that which causes it to be productive; I mean what is called vital heat. This is not fire nor any such force, but it is the spiritus included in the semen and the foam-like, and the natural principle in the spiritus, being analogous to the element of the stars. Hence, whereas fire generates no animal and we do not find any living thing forming in either solids or liquids under the influence of fire, the heat of the sun and that of animals does generate them. Not only is this true of the heat that works through the semen, but whatever other residuum of the animal nature there may be, this also has still a vital principle in it. From such considerations it is clear that the heat in animals neither is fire nor derives its origin from fire.

Let us return to the material of the semen, in and with which comes away from the male the spiritus conveying the principle of soul. Of this principle there are two kinds; the one is not connected with matter, and belongs to those animals in which is included something divine (to wit, what is called the reason), while the other is inseparable from matter. This material of the semen dissolves and evaporates because it has a liquid and watery nature. Therefore we ought not to expect it always to come out again from the female or to form any part of the embryo that has taken shape from it; the case resembles that of the fig-juice which curdles milk, for this too changes without becoming any part of the curdling masses.

It has been settled, then, in what sense the embryo and the semen have soul, and in what sense they have not; they have it potentially but not actually.

Now semen is a secretion and is moved with the same movement as that in virtue of which the body increases (this increase being due to subdivision of the nutriment in its last stage). When it has entered the uterus it puts into form the corresponding secretion of the female and moves it with the same movement wherewith it is moved itself. For the female’s contribution also is a secretion, and has all the arts in it potentially though none of them actually; it has in it potentially even those parts which differentiate the female from the male, for just as the young of mutilated parents are sometimes born mutilated and sometimes not, so also the young born of a female are sometimes female and sometimes male instead. For the female is, as it were, a mutilated male, and the catamenia are semen, only not pure; for there is only one thing they have not in them, the principle of soul. For this reason, whenever a wind-egg is produced by any animal, the egg so forming has in it the parts of both sexes potentially, but has not the principle in question, so that it does not develop into a living creature, for this is introduced by the semen of the male. When such a principle has ben imparted to the secretion of the female it becomes an embryo.

Liquid but corporeal substances become surrounded by some kind of covering on heating, like the solid scum which forms on boiled foods when cooling. All bodies are held together by the glutinous; this quality, as the embryo develops and increases in size, is acquired by the sinewy substance, which holds together the parts of animals, being actual sinew in some and its analogue in others. To the same class belong also skin, blood-vessels, membranes, and the like, for these differ in being more or less glutinous and generally in excess and deficiency.

4

In those animals whose nature is comparatively imperfect, when a perfect embryo (which, however, is not yet a perfect animal) has been formed, it is cast out from the mother, for reasons previously stated. An embryo is then complete when it is either male or female, in the case of those animals who possess this distinction, for some (i.e. all those which are not themselves produced from a male or female parent nor from a union of the two) produce an offspring which is neither male nor female. Of the generation of these we shall speak later.

The perfect animals, those internally viviparous, keep the developing embryo within themselves and in close connexion until they give birth to a complete animal and bring it to light.

A third class is externally viviparous but first internally oviparous; they develop the egg into a perfect condition, and then in some cases the egg is set free as with creatures externally oviparous, and the animal is produced from the egg within the mother’s body; in other cases, when the nutriment from the egg is consumed, development is completed by connection with the uterus, and therefore the egg is not set free from the uterus. This character marks the cartilaginous fish, of which we must speak later by themselves.

Here we must make our first start from the first class; these are the perfect or viviparous animals, and of these the first is man. Now the secretion of the semen takes place in all of them just as does that of any other residual matter. For each is conveyed to its proper place without any force from the breath or compulsion of any other cause, as some assert, saying that the generative parts attract the semen like cupping-glasses, aided by the force of the breath, as if it were possible for either this secretion or the residue of the solid and liquid nutriment to go anywhere else than they do without the exertion of such a force. Their reason is that the discharge of both is attended by holding the breath, but this is a common feature of all cases when it is necessary to move anything, because strength arises through holding the breath. Why, even without this force the secretions or excretions are discharged in sleep if the parts concerned are full of them and are relaxed. One might as well say that it is by the breath that the seeds of plants are always segregated to the places where they are wont to bear fruit. No, the real cause, as has been stated already, is that there are special parts for receiving all the secretions, alike the useless (as the residues of the liquid and solid nutriment), and the blood, which has the so-called blood-vessels.

To consider now the region of the uterus in the female—the two blood-vessels, the great vessel and the aorta, divide higher up, and many fine vessels from them terminate in the uterus. These become over-filled from the nourishment they convey, nor is the female nature able to concoct it, because it is colder than man’s; so the blood is excreted through very fine vessels into the uterus, these being unable on account of their narrowness to receive the excessive quantity, and the result is a sort of haemorrhage. The period is not accurately defined in women, but tends to return during the waning of the moon. This we should expect, for the bodies of animals are colder when the environment happens to become so, and the time of change from one month to another is cold because of the absence of the moon, whence also it results that this time is stormier than the middle of the month. When then the residue of the nourishment has changed into blood, the catamenia tend to occur at the above-mentioned period, but when it is not concocted a little matter at a time is always coming away, and this is why ‘whites’ appear in females while still small, in fact mere children. If both these discharges of the secretions are moderate, the body remains in good health, for they act as a purification of the secretions which are the causes of a morbid state of body; if they do not occur at all or if they are excessive, they are injurious, either causing illness or pulling down the patient; hence whites, if continuous and excessive, prevent girls from growing. This secretion then is necessarily discharged by females for the reasons given; for, the female nature being unable to concoct the nourishment thoroughly, there must not only be left a residue of the useless nutriment, but also there must be a residue in the blood-vessels, and this filling the channels of the finest vessels must overflow. Then Nature, aiming at the best end, uses it up in this place for the sake of generation, that another creature may come into being of the same kind as the former was going to be, for the menstrual blood is already potentially such as the body from which it is discharged.

In all females, then, there must necessarily be such a secretion, more indeed in those that have blood and of these most of all in man, but in the others also some matter must be collected in the uterine region. The reason why there is more in those that have blood and most in man has been already given, but why, if all females have such a secretion, have not all males one to correspond? For some of them do not emit semen but, just as those which do emit it fashion by the movement in the semen the mass forming from the material supplied by the female, so do the animals in question bring the same to pass and exert the same formative power by the movement within themselves in that part from whence the semen is secreted. This is the region about the diaphragm in all those animals which have one, for the heart or its analogue is the first principle of a natural body, while the lower part is a mere addition for the sake of it. Now the reason why it is not all males that have a generative secretion, while all females do, is that the animal is a body with Soul or life; the female always provides the material, the male that which fashions it, for this is the power that we say they each possess, and this is what is meant by calling them male and female. Thus while it is necessary for the female to provide a body and a material mass, it is not necessary for the male, because it is not within the work of art or the embryo that the tools or the maker must exist. While the body is from the female, it is the soul that is from the male, for the soul is the reality of a particular body. For this reason if animals of a different kind are crossed (and this is possible when the periods of gestation are equal and conception takes place nearly at the same season and there is no great difference in the of the animals), the first cross has a common resemblance to both parents, as the hybrid between fox and dog, partridge and domestic fowl, but as time goes on and one generation springs from another, the final result resembles the female in form, just as foreign seeds produce plants varying in accordance with the country in which they are sown. For it is the soil that gives to the seeds the material and the body of the plant. And hence the part of the female which receives the semen is not a mere passage, but the uterus has a considerable width, whereas the males that emit semen have only passages for this purpose, and these are bloodless.

Each of the secretions becomes such at the moment when it is in its proper place; before that there is nothing of the sort unless with much violence and contrary to nature.

We have thus stated the reason for which the generative secretions are formed in animals. But when the semen from the male (in those animals which emit semen) has entered, it puts into form the purest part of the female secretion (for the greater part of the catamenia also is useless and fluid, as is the most fluid part of the male secretion, i.e. in a single emission, the earlier discharge being in most cases apt to be infertile rather than the later, having less vital heat through want of concoction, whereas that which is concocted is thick and of a more material nature).

If there is no external discharge, either in women or other animals, on account of there not being much useless and superfluous matter in the secretion, then the quantity forming within the female altogether is as much as what is retained within those animals which have an external discharge; this is put into form by the power of the male residing in the semen secreted by him, or, as is clearly seen to happen in some insects, by the part in the female analogous to the uterus being inserted into the male.

It has been previously stated that the discharge accompanying sexual pleasure in the female contributes nothing to the embryo. The chief argument for the opposite view is that what are called bad dreams occur by night with women as with men; but this is no proof, for the same thing happens to young men also who do not yet emit semen, and to those who do emit semen but whose semen is infertile.

It is impossible to conceive without the emission of the male in union and without the secretion of the corresponding female material, whether it be discharged externally or whether there is only enough within the body. Women conceive, however, without experiencing the pleasure usual in such intercourse, if the part chance to be in heat and the uterus to have descended. But generally speaking the opposite is the case, because the os uteri is not closed when the discharge takes place which is usually accompanied by pleasure in women as well as men, and when this is so there is a readier way for the semen of the male to be drawn into the uterus.

The actual discharge does not take place within the uterus as some think, the os uteri being too narrow, but it is in the region in front of this, where the female discharges the moisture found in some cases, that the male emits the semen. Sometimes it remains in this place; at other times, if the uterus chance to be conveniently placed and hot on account of the purgation of the catamenia, it draws it within itself. A proof of this is that pessaries, though wet when applied, are removed dry. Moreover, in all those animals which have the uterus near the hypozoma, as birds and viviparous fishes, it is impossible that the semen should be so discharged as to enter it; it must be drawn into it. This region, on account of the heat which is in it, attracts the semen. The discharge and collection of the catamenia also excite heat in this part. Hence it acts like cone-shaped vessels which, when they have been washed out with hot water, their mouth being turned downwards, draw water into themselves. And this is the way things are drawn up, but some say that nothing of the kind happens with the organic parts concerned in copulation. Precisely the opposite is the case of those who say the woman emits semen as well as the man, for if she emits it outside the uterus this must then draw it back again into itself if it is to be mixed with the semen of the male. But this is a superfluous proceeding, and Nature does nothing superfluous.

When the material secreted by the female in the uterus has been fixed by the semen of the male (this acts in the same way as rennet acts upon milk, for rennet is a kind of milk containing vital heat, which brings into one mass and fixes the similar material, and the relation of the semen to the catamenia is the same, milk and the catamenia being of the same nature)—when, I say, the more solid part comes together, the liquid is separated off from it, and as the earthy parts solidify membranes form all round it; this is both a necessary result and for a final cause, the former because the surface of a mass must solidify on heating as well as on cooling, the latter because the foetus must not be in a liquid but be separated from it. Some of these are called membranes and others choria, the difference being one of more or less, and they exist in ovipara and vivipara alike.

When the embryo is once formed, it acts like the seeds of plants. For seeds also contain the first principle of growth in themselves, and when this (which previously exists in them only potentially) has been differentiated, the shoot and the root are sent off from it, and it is by the root that the plant gets nourishment; for it needs growth. So also in the embryo all the parts exist potentially in a way at the same time, but the first principle is furthest on the road to realization. Therefore the heart is first differentiated in actuality. This is clear not only to the senses (for it is so) but also on theoretical grounds. For whenever the young animal has been separated from both parents it must be able to manage itself, like a son who has set up house away from his father. Hence it must have a first principle from which comes the ordering of the body at a later stage also, for if it is to come in from outside at later period to dwell in it, not only may the question be asked at what time it is to do so, but also we may object that, when each of the parts is separating from the rest, it is necessary that this principle should exist first from which comes growth and movement to the other parts. (Wherefore all who say, as did Democritus, that the external parts of animals are first differentiated and the internal later, are much mistaken; it is as if they were talking of animals of stone or wood. For such as these have no principle of growth at all, but all animals have, and have it within themselves.) Therefore it is that the heart appears first distinctly marked off in all the sanguinea, for this is the first principle or origin of both homogeneous and heterogeneous parts, since from the moment that the animal or organism needs nourishment, from that moment does this deserve to be called its principle or origin. For the animal grows, and the nutriment, in its final stage, of an animal is the blood or its analogue, and of this the blood-vessels are the receptacle, wherefore the heart is the principle or origin of these also. (This is clear from the Enquiries and the anatomical drawings.)

Since the embryo is already potentially an animal but an imperfect one, it must obtain its nourishment from elsewhere; accordingly it makes use of the uterus and the mother, as a plant does of the earth, to get nourishment, until it is perfected to the point of being now an animal potentially locomotive. So Nature has first designed the two blood-vessels from the heart, and from these smaller vessels branch off to the uterus. These are what is called the umbilicus, for this is a blood-vessel, consisting of one or more vessels in different animals. Round these is a skin-like integument, because the weakness of the vessels needs protection and shelter. The vessels join on to the uterus like the roots of plants, and through them the embryo receives its nourishment. This is why the animal remains in the uterus, not, as Democritus says, that the parts of the embryo may be moulded in conformity with those of the mother. This is plain in the ovipara, for they have their parts differentiated in the egg after separation from the matrix.

Here a difficulty may be raised. If the blood is the nourishment, and if the heart, which first comes into being, already contains blood, and the nourishment comes from outside, whence did the first nourishment enter? Perhaps it is not true that all of it comes from outside just as in the seeds of plants there is something of this nature, the substance which at first appears milky, so also in the material of the animal embryo the superfluous matter of which it is formed is its nourishment from the first.

The embryo, then, grows by means of the umbilicus in the same way as a plant by its roots, or as animals themselves when separated from the nutriment within the mother, of which we must speak later at the time appropriate for discussing them. But the parts are not differentiated, as some suppose, because like is naturally carried to like. Besides many other difficulties involved in this theory, it results from it that the homogeneous parts ought to come into being each one separate from the rest, as bones and sinews by themselves, and flesh by itself, if one should accept this cause. The real cause why each of them comes into being is that the secretion of the female is potentially such as the animal is naturally, and all the parts are potentially present in it, but none actually. It is also because when the active and the passive come in contact with each other in that way in which the one is active and the other passive (I mean in the right manner, in the right place, and at the right time), straightway the one acts and the other is acted upon. The female, then, provides matter, the male the principle of motion. And as the products of art are made by means of the tools of the artist, or to put it more truly by means of their movement, and this is the activity of the art, and the art is the form of what is made in something else, so is it with the power of the nutritive soul. As later on in the case of mature animals and plants this soul causes growth from the nutriment, using heat and cold as its tools (for in these is the movement of the soul), and each thing comes into being in accordance with a certain formula, so also from the beginning does it form the product of nature. For the material by which this latter grows is the same as that from which it is constituted at first; consequently also the power which acts upon it is identical with that which originally generated it; if then this acting power is the nutritive soul, this is also the generative soul, and this is the nature of every organism, existing in all animals and plants. [But the other parts of the soul exist in some animals, not in others.] In plants, then, the female is not separated from the male, but in those animals in which it is separated the male needs the female besides.

5

And yet the question may be raised why it is that, if indeed the female possesses the same soul and if it is the secretion of the female which is the material of the embryo, she needs the male besides instead of generating entirely from herself. The reason is that the animal differs from the plant by having sense-perception; if the sensitive soul is not present, either actually or potentially, and either with or without qualification, it is impossible for face, hand, flesh, or any other part to exist; it will be no better than a corpse or part of a corpse. If then, when the sexes are separated, it is the male that has the power of making the sensitive soul, it is impossible for the female to generate an animal from itself alone, for the process in question was seen to involve the male quality. Certainly that there is a good deal in the difficulty stated is plain in the case of the birds that lay wind-eggs, showing that the female can generate up to a certain point unaided. But this still involves a difficulty; in what way are we to say that their eggs live? It neither possible that they should live in the same way as fertile eggs (for then they would produce a chick actually alive), nor yet can they be called eggs only in the sense in which an egg of wood or stone is so called, for the fact that these eggs go bad shows that they previously participate in some way in life. It is plain, then, that they have some soul potentially. What sort of soul will this be? It must be the lowest surely, and this is the nutritive, for this exists in all animals and plants alike. Why then does it not perfect the parts and the animal? Because they must have a sensitive soul, for the parts of animals are not like those of a plant. And so the female animal needs the help of the male, for in these animals we are speaking of the male is separate. This is exactly what we find, for the wind-eggs become fertile if the male tread the female in a certain space of time. About the cause of these things, however, we shall enter into detail later.

If there is any kind of animal which is female and has no male separate from it, it is possible that this may generate a young one from itself without copulation. No instance of this worthy of credit has been observed up to the present at any rate, but one case in the class of fishes makes us hesitate. No male of the so-called erythrinus has ever yet been seen, but females, and specimens full of roe, have been seen. Of this, however, we have as yet no proof worthy of credit. Again, some members of the class of fishes are neither male nor female, as eels and a kind of mullets found in stagnant waters. But whenever the sexes are separate the female cannot generate perfectly by herself alone, for then the male would exist in vain, and Nature makes nothing in vain. Hence in such animals the male always perfects the work of generation, for he imparts the sensitive soul, either by means of the semen or without it. Now the parts of the embryo already exist potentially in the material, and so when once the principle of movement has been imparted to them they develop in a chain one after another, as the wheels are moved one by another in the automatic machines. When some of the natural philosophers say that like is brought to like, this must be understood, not in the sense that the parts are moved as changing place, but that they stay where they are and the movement is a change of quality (such as softness, hardness, colour, and the other differences of the homogeneous parts); thus they become in actuality what they previously were in potentiality. And what comes into being first is the first principle; this is the heart in the sanguinea and its analogue in the rest, as has been often said already. This is plain not only to the senses (that it is first to come into being), but also in view of its end; for life fails in the heart last of all, and it happens in all cases that what comes into being last fails first, and the first last, Nature running a double course, so to say, and turning back to the point from whence she started. For the process of becoming is from the non-existent to the existent, and that of perishing is back again from the existent to the non-existent.

6

After this, as said already, the internal parts come into being before the external. The greater become visible before the less, even if some of them do not come into being before them. First the parts above the hypozoma are differentiated and are superior in size; the part below is both smaller and less differentiated. This happens in all animals in which exists the distinction of upper and lower, except in the insects; the growth of those that produce a scolex is towards the upper part, for this is smaller in the beginning. The cephalopoda are the only locomotive animals in which the distinction of upper and lower does not exist.

What has been said applies to plants also, that the upper portion is earlier in development than the lower, for the roots push out from the seed before the shoots.

The agency by which the parts of animals are differentiated is air, not however that of the mother nor yet of the embryo itself, as some of the physicists say. This is manifest in birds, fishes, and insects. For some of these are separated from the mother and produced from an egg, within which the differentiation takes place; other animals do not breathe at all, but are produced as a scolex or an egg; those which do breathe and whose parts are differentiated within the mother’s uterus yet do not breathe until the lung is perfected, and the lung and the preceding parts are differentiated before they breathe. Moreover, all polydactylous quadrupeds, as dog, lion, wolf, fox, jackal, produce their young blind, and the eyelids do not separate till after birth. Manifestly the same holds also in all the other parts; as the qualitative, so also the quantitative differentia comes into being, pre-existing potentially but being actualized later by the same causes by which the qualitative distinction is produced, and so the eyelids become two instead of one. Of course air must be present, because heat and moisture are present, the former acting and the latter being acted upon.

Some of the ancient nature-philosolphers made an attempt to state which part comes into being after which, but were not sufficiently acquainted with the facts. It is with the parts as with other things; one naturally exists prior to another. But the word ‘prior’ is used in more senses than one. For there is a difference between the end or final cause and that which exists for the sake of it; the latter is prior in order of development, the former is prior in reality. Again, that which exists for the sake of the end admits of division into two classes, (1) the origin of the movement, (2) that which is used by the end; I mean, for instance, (1) that which can generate, (2) that which serves as an instrument to what is generated, for the one of these, that which makes, must exist first, as the teacher before the learner, and the other later, as the pipes are later than he who learns to play upon them, for it is superfluous that men who do not know how to play should have pipes. Thus there are three things: first, the end, by which we mean that for the sake of which something else exists; secondly, the principle of movement and of generation, existing for the sake of the end (for that which can make and generate, considered simply as such, exists only in relation to what is made and generated); thirdly, the useful, that is to say what the end uses. Accordingly, there must first exist some part in which is the principle of movement (I say a part because this is from the first one part of the end and the most important part too); next after this the whole and the end; thirdly and lastly, the organic parts serving these for certain uses. Hence if there is anything of this sort which must exist in animals, containing the principle and end of all their nature, this must be the first to come into being—first, that is, considered as the moving power, but simultaneous with the whole embryo if considered as a part of the end. Therefore all the organic parts whose nature is to bring others into being must always themselves exist before them, for they are for the sake of something else, as the beginning for the sake of the end; all those parts which are for the sake of something else but are not of the nature of beginnings must come into being later. So it is not easy to distinguish which of the parts are prior, those which are for the sake of another or that for the sake of which are the former. For the parts which cause the movement, being prior to the end in order of development, come in to cause confusion, and it is not easy to distinguish these as compared with the organic parts. And yet it is in accordance with this method that we must inquire what comes into being after what; for the end is later than some parts and earlier than others. And for this reason that part which contains the first principle comes into being first, next to this the upper half of the body. This is why the parts about the head, and particularly the eyes, appear largest in the embryo at an early stage, while the parts below the umbilicus, as the legs, are small; for the lower parts are for the sake of the upper, and are neither parts of the end nor able to form it.

But they do not say well nor do they assign a necessary cause who say simply that ‘it always happens so’, and imagine that this is a first principle in these cases. Thus Democritus of Abdera says that ‘there is no beginning of the infinite; now the cause is a beginning, and the eternal is infinite; in consequence, to ask the cause of anything of this kind is to seek for a beginning of the infinite’. Yet according to this argument, which forbids us to seek the cause, there will be no proof of any eternal truth whatever; but we see that there is a proof of many such, whether by ‘eternal’ we mean what always happens or what exists eternally; it is an eternal truth that the angles of a triangle are always equal to two right angles, or that the diagonal of a square is incommensurable with the side, and nevertheless a cause and a proof can be given for these truths. While, then, it is well said that we must not take on us to seek a beginning (or first principle) of all things, yet this is not well said of all things whatever that always are or always happen, but only of those which really are first principles of the eternal things; for it is by another method, not by proof, that we acquire knowledge of the first principle. Now in that which is immovable and unchanging the first principle is simply the essence of the thing, but when we come to those things which come into being the principles are more than one, varying in kind and not all of the same kind; one of this number is the principle of movement, and therefore in all the sanguinea the heart is formed first, as was said at the beginning, and in the other animals that which is analogous to the heart.

From the heart the blood-vessels extend throughout the body as in the anatomical diagrams which are represented on the wall, for the parts lie round these because they are formed out of them. The homogeneous parts are formed by heat and cold, for some are put together and solidified by the one and some by the other. The difference between these has already been discussed elsewhere, and it has been stated what kinds of things are soluble by liquid and fire, and what are not soluble by liquid and cannot be melted by fire. The nutriment then oozes through the blood-vessels and the passages in each of the parts, like water in unbaked pottery, and thus is formed the flesh or its analogues, being solidified by cold, which is why it is also dissolved by fire. But all the particles given off which are too earthy, having but little moisture and heat, cool as the moisture evaporates along with the heat; so they become hard and earthy in character, as nails, horns, hoofs, and beaks, and therefore they are softened by fire but none of them is melted by it, while some of them, as egg-shells, are soluble in liquids. The sinews and bones are formed by the internal heat as the moisture dries, and hence the bones are insoluble by fire like pottery, for like it they have been as it were baked in an oven by the heat in the process of development. But it is not anything whatever that is made into flesh or bone by the heat, but only something naturally fitted for the purpose; nor is it made in any place or time whatever, but only in a place and time naturally so fitted. For neither will that which exists potentially be made except by that moving agent which possesses the actuality, nor will that which possesses the actuality make anything whatever; the carpenter would not make a box except out of wood, nor will a box be made out of the wood without the carpenter. The heat exists in the seminal secretion, and the movement and activity in it is sufficient in kind and in quantity to correspond to each of the parts. In so far as there is any deficiency or excess, the resulting product is in worse condition or physically defective, in like manner as in the case of external substances which are thickened by boiling that they may be more palatable or for any other purpose. But in the latter case it is we who apply the heat in due measure for the motion required; in the former it is the nature of the male parent that gives it, or with animals spontaneously generated it is the movement and heat imparted by the right season of the year that it is the cause.

Cooling, again, is mere deprivation of heat. Nature makes use of both; they have of necessity the power of bringing about different results, but in the development of the embryo we find that the one cools and the other heats for some definite purpose, and so each of the parts is formed; thus it is in one sense by necessity, in another for a final cause, that they make the flesh soft, the sinews solid and elastic, the bones solid and brittle. The skin, again, is formed by the drying of the flesh, like the scum upon boiled substances; it is so formed not only because it is on the outside, but also because what is glutinous, being unable to evaporate, remains on the surface. While in other animals the glutinous is dry, for which reason the covering of the invertebrates is testaceous or crustaceous, in the vertebrates it is rather of the nature of fat. In all of these which are not of too earthy a nature the fat is collected under the covering of the skin, a fact which points to the skin being formed out of such a glutinous substance, for fat is somewhat glutinous. As we said, all these things must be understood to be formed in one sense of necessity, but in another sense not of necessity but for a final cause.

The upper half of the body, then, is first marked out in the order of development; as time goes on the lower also reaches its full size in the sanguinea. All the parts are first marked out in their outlines and acquire later on their colour and softness or hardness, exactly as if Nature were a painter producing a work of art, for painters, too, first sketch in the animal with lines and only after that put in the colours.

Because the source of the sensations is in the heart, therefore this is the part first formed in the whole animal, and because of the heat of this organ the cold forms the brain, where the blood-vessels terminate above, corresponding to the heat of the heart. Hence the parts about the head begin to form next in order after the heart, and surpass the other parts in size, for the brain is from the first large and fluid.

There is a difficulty about what happens with the eyes of animals. Though from the beginning they appear very large in all creatures, whether they walk or swim or fly, yet they are the last of the parts to be formed completely, for in the intervening time they collapse. The reason is this. The sense-organ of the eyes is set upon certain passages, as are the other sense-organs. Whereas those of touch and taste are simply the body itself or some part of the body of animals, those of smell and hearing are passages connecting with the external air and full themselves of innate spiritus; these passages end at the small blood-vessels about the brain which run thither from the heart. But the eye is the only sense-organ that has a bodily constitution peculiar to itself. It is fluid and cold, and does not exist from the first in the place which it occupies later in the same way as the other parts do, for they exist potentially to begin with and actually come into being later, but the eye is the purest part of the liquidity about the brain drained off through the passages which are visible running from them to the membrane round the brain. A proof of this is that, apart from the brain, there is no other part in the head that is cold and fluid except the eye. Of necessity therefore this region is large at first but falls in later. For the same thing happens with the brain; at first it is liquid and large, but in course of evaporation and concoction it becomes more solid and falls in; this applies both to the brain and the eyes. The head is very large at first, on account of the brain, and the eyes appear large because of the liquid in them. They are the last organs to reach completion because the brain is formed with difficulty; for it is at a late period that it gets rid of its coldness and fluidity; this applies to all animals possessing a brain, but especially to man. For this reason the ‘bregma’ is the last of the bones to be formed; even after birth this bone is still soft in children. The cause of this being so with men more than with other animals is the fact that their brain is the most fluid and largest. This again is because the heat in man’s heart is purest. His intellect shows how well he is tempered, for man is the wisest of animals. And children for a long time have no control over their heads on account of the heaviness of the brain; and the same applies to the parts which it is necessary to move, for it is late that the principle of motion gets control over the upper parts, and last of all over those whose motion is not connected directly with it, as that of the legs is not. Now the eyelid is such a part. But since Nature makes nothing superfluous nor in vain, it is clear also that she makes nothing too late or too soon, for if she did the result would be either in vain or superfluous. Hence it is necessary that the eyelids should be separated at the same time as the heart is able to move them. So then the eyes of animals are perfected late because of the amount of concoction required by the brain, and last of all the parts because the motion must be very strong before it can affect parts so far from the first principle of motion and so cold. And it is plain that such is the nature of the eyelids, for if the head is affected by never so little heaviness through sleepiness or drunkenness or anything else of the kind, we cannot raise the eyelids though their own weight is so small. So much for the question how the eyes come into being, and why and for what cause they are the last to be fully developed.

. . .