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Abstract: Conventional methods for estimating the average return period,E(T), and failure risk,R, generally ignore the impact o
persistence in annual streamflows on associated probabilistic statements and streamflow statistics. Recent evaluations of
observations indicate statistically significant serial correlations~persistence! associated with annual low flows in the United States.
define the average occurrence intervalE(T) as the expected time to the first event, and we present a method for estimatingE(T) andR
in the presence of persistence. We show that for observed ranges of persistence,E(T) can be nearly 100% greater andR more than 20%
lower than conventional estimates. This implies that the expected design life of a system is longer when persistence is taken int
Also, by ignoring persistence, low flow quantiles may be underestimated by 50% or more. An evaluation of the effect of persis
drought risk estimation across the U.S. is presented.
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Introduction

It is generally assumed that certain streamflow statistics evalu
at an annual time step, for example, floods or low flows,
serially independent. Consequently, frequency analyses for flo
and low flows usually ignore serial correlation~a measure of per-
sistence!. The seven-day low flow, defined as the minimum a
nual flow obtained from a seven-day moving average of da
streamflow, is commonly used in engineering applications suc
waste load allocation, instream flow regulation, drought risk,
sign of cooling plants, siting of treatment plants and sanitary la
fills, and decision making regarding interbasin transfers and
lowable basin withdrawals. Accurate estimation of design l
flow quantiles is paramount to the success of many enginee
designs. Contrary to the assumption of serial independence, D
glas et al.~2000! found statistically significant serial correlatio
in annual minimum seven-day low flows at approximately 25%
the stations analyzed across the U.S. The effect of persistenc
engineering design quantiles must, therefore, be evaluated in
flow investigations.
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Definition of Average Recurrence and Occurrence
Intervals

A quantile, designatedQp , is the streamflow value associate
with a specified exceedance or nonexceedance probability,p. In
practice, instead of referring to a quantile in terms of probabil
it is often referred to in terms of its average return period. F
example,Q0.01 represents the streamflow with an annual exce
ance probability equal to 0.01; this quantile is commonly refer
to as the 100-year flood, and is denotedQ100. In low flow analy-
ses, a common design quantile is the seven-day low flow with
average return period of 10 years, which has a nonexceed
probability of 0.1 and is typically denotedQ7,10.

Gumbel~1941! and Thomas~1948! defined the return period
T, as the interval between flood events, where a flood event
defined as a streamflow greater than a threshold value~design
flood!. They noted that, assuming the flood events are indep
dent of one another,T follows a geometric probability distribu-
tion. Therefore

P~T5t !5p~12p! t21 for t51,2,3, . . . ,̀ (1)

wherep5probability that the design flood will be exceeded in a
one year~the annual exceedance probability!. The mean, or ex-
pected value ofT, denotedE(T), is

E~T!5(
t51

`

t•P~T5t !5(
t51

`

t•p~12p! t2151/p (2)

The average return period, as originally derived by Gumbel
Thomas, is the time it takes, on average, for a design flood
given probability,p, to be exceeded. In practice, when the te
‘‘return period’’ is used, it is usually meant to be interpreted as
average return period.

Interestingly, the average return period can be defined in
ferent ways for different applications. Lloyd~1970! defined the
average return period as the expectation of the interval betw
two flood events. Lloyd showed that the average return pe
defined in this way is insensitive to streamflow persistence. Vo
~1987! defined the average return period of a reservoir sys
failure as the expected number of years before the first occurre
of a system failure~i.e., flood or drought!. Vogel showed that the
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average return period defined in this way is indeed affected
streamflow persistence. Fernandez and Salas~1999a! and Sen
~1999! developed more general formulations for estimating
average return period of design events in the presence of pe
tence. Tasker~1983! recognized the effect of persistence
streamflow records on the reliability of quantile estimates a
developed a method for quantile estimation using the effec
record length,ne , which, in most cases, is less than the act
historical record length,n, when persistence is present in th
streamflow record.

The concept of average return period can be applied to b
exceedance events~i.e., floods! and nonexceedance events~i.e.,
low flows or droughts!. In this paper, we accommodate the
differing applications by redefiningp as the probability of design
failure regardless of whether that failure represents an exceed
event or a nonexceedance event. We will use the phrase ‘‘re
rence interval’’ to describe the time between a series of eventsW,
and coin a new phrase, ‘‘occurrence interval,’’ to describe
time to the first event,T. We define the expected values of the
two intervals as
• Average occurrence interval,E(T)5the expected value of the

occurrence interval; and
• Average recurrence interval,E(W)5the expected value of the

recurrence interval.
We believe that in practice, the average occurrence interva
more useful than the concept of the average recurrence inte
because it does not require an assumption regarding initial co
tions; hence, it more closely corresponds to design conditions
other words, one does not usually assume that a flood or dro
has just occurred, when planning for the next flood or droug
We first review previous literature on this subject using a comm
notation and terminology, and derive equations for estimating
average occurrence interval and failure risk that incorpor
streamflow persistence. We then explore the effect of stream
persistence on average occurrence intervals, quantiles, an
risk of design failure.

Two-State Markov Model

In any given year, an annual statistic,X, may be in one of two
states relative to a design threshold,X0 ; it either exceedsX0

~constituting a failure state! or it does not~constituting a nonfail-
ure or safe state!. In the case of a flood control structure, excee
ing the design threshold would constitute a failure state. Alter
tively, in the case of a drought, exceeding a critical deficit wo
constitute a failure. In any given year, the probability of failure
equal toP(X.X0)5p. Conversely, the probability that the de
sign will operate in the safe state isP(X<X0)512p5q. If the
assumption of serial independence ofX is valid, a simple two-
state Bernoulli model is sufficient to model the transition fro
one state to the next. IfU denotes the state ofX in any given year
t, then in the two-state Bernoulli case

P~UtuUt21 ,Ut22 ,...,U0!5P~Ut! (3)

In other words, the state ofX in any given year is independent o
the state ofX in any previous year. However, in the case whereX
is serially correlated, the situation is more complex. The simp
model that accommodates persistence is a two-state Markov c
model

P~UtuUt21 ,Ut22 , . . . ,U0!5P~UtuUt21! (4)

which assumes that the state ofX in any given year is only influ-
enced by the state ofX in the previous year. This model has be
-
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used by many authors~Lloyd 1970; Jackson 1975; Sen 197
Hirsch 1979; Stedinger et al. 1983; Vogel 1987; Vogel and B
lognese 1995; Fernandez and Salas 1999a; Sen 1999! to model
the effects of year-to-year streamflow persistence. Chung
Salas~2000! used more complex~discrete autoregressive and di
crete autoregressive moving average! models to derive the prob
ability distribution of drought occurrence and expressions for
average return period and risk.

Following Vogel ~1987!, let the row vectorPt5(p,q) specify
the probability that a design is in either the failure state~with
probability p! or the safe state~with probability q! in year t and
that Pt , t51, . . . ,N forms a Markov chain with the probability
transition matrix

A5F12pf s pf s

ps f 12ps f
G (5)

whereps f5probability that a failure year follows a safe year; an
pf s5probability that a safe year follows a failure year. The Ma
kov chain model is given byPt5Pt21A and is depicted graphi-
cally in Fig. 1. Fig. 2 illustrates the joint probability regions wit
respect to the threshold,X0 . The marginal probabilities are de
fined as

P~Xt<X0ùXt21.X0!1P~Xt.X0ùXt21.X0!

5P~Xt21.X0!5p (6)

P~Xt<X0ùXt21<X0!1P~Xt.X0ùXt21<X0!

5P~Xt21<X0!5q (7)

Borrowing from Sen~1976!, we define the autorun coefficient,r,
as the conditional probability of two consecutive failure stat
which is expressed as

Fig. 1. Graphical representation of two-state Markov model

Fig. 2. Joint probability regions for four Markov transition states f
specified design threshold,X0
JOURNAL OF HYDROLOGIC ENGINEERING / MAY/JUNE 2002 / 221
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r 512pf s5P~Xi.X0uXi 21.X0!5
P~Xi.X0ùXi 21.X0!

p
(8)

With the relationships defined in Eq.~8! and Fig. 2, we can ex-
press the conditional probabilities for the other three transition
terms ofr, p, andq, as did Sen~1976!

pf s5P~Xi<X0uXi 21.X0!512r (9)

ps f5P~Xi.X0uXi 21<X0!5
p

q
3~12r ! (10)

12ps f5P~Xi<X0uXi 21<X0!512
p

q
3~12r ! (11)

Average Occurrence Interval and Risk of Failure
in Presence of Streamflow Persistence

For single events in Markov-dependent trials, Vogel~1987! and
Fernandez and Salas~1999a! derived an expression for the ave
age occurrence interval of a system failure defined by

E~T!511
q2

p~12r !
(12)

Similarly, Sen~1999! used a two-state Markov chain model
derive an expression for the average occurrence interval of a
ure ~in this case, the exceedance of a design flood! as

E~T!5
q2

F12
p

q
~12r !Gp~12r !

(13)

Eqs.~12! and ~13! were derived with differing initial conditions
Eq. ~13! is conditioned on the first year being a failure year, wh
for Eq. ~12!, the first year can be either a safe year or a fail
year. We will use the unconditional equation~12! for the remain-
der of this paper to estimate the average occurrence interval
system failure in the presence of persistence, since that situ
most closely resembles the typical assumptions associated w
hydrologic design.

The fact that the average recurrence interval~time between
successive events! is not affected by streamflow persistence, b
the average occurrence interval~time to the first event! is, leads
us to conclude that the effect of streamflow persistence on hy
logic design is most pronounced over the short term. For cer
engineering applications, such as reservoir design, the expe
time to the first failure of the system is of more interest than is
average time between successive failures over a long perio
record. This information is used to evaluate the risk of failu
over the design life of the system. If we define failure risk,R, as
the probability of at least one failure over the design life,n, of a
system~Chow et al. 1988! and assume that we are starting in
safe year, then failure risk can be expressed as

R512P~X1<X0!•)
t52

n

P~Xt<X0uXt21<X0!

512q•F12
p

q
~12r !Gn21

(14)

which agrees with Sen~1999! and Fernandez and Salas~1999a!.
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Simplified Method for Relating Average Occurrence
Interval and Failure Risk to Persistence

If we make the common assumption that streamflow is logn
mally distributed and thatX represents the annual statistic~maxi-
mum or minimum! calculated from the log-transformed stream
flow data, then the joint densityP(Xt.X0ùXt21.X0) can be
calculated using the double integral introduced by Sen~1976!

P~Xt.X0ùXt21.X0!

5E
X0

`E
X0

` 1

2p~12r2!1/2

3expF2
1

2~12r2!
~xi

222rxixi 211xi 21
2 !Gdxidxi 21

(15)

wherexi andxi 215normal variates with a mean of zero and un
variance; andr5lag-one autocorrelation coefficient of the log
transformed data. The autorun coefficientr @Eq. ~8!, which de-
pends on the double integral in Eq.~15!# is a function of bothp
andr; therefore, Eq.~15! must be solved for each value ofp and
r. For Eqs.~12! and~14! to be of practical use, we developed a
approximation forr

r 5
abppc

p
(16)

The coefficientsa, b, andc are functions ofr. Using a polynomial
model, the following equations were developed for calculating
coefficients in Eq.~16!:

a5121.514r12.601r221.0016r321.620r411.475r5

(17)

b5111.553r20.7789r223.5810r315.5638r422.701r5

(18)

c5222.0855r12.3419r222.2995r311.6817r420.6232r5

(19)

Eqs.~16!–~19! replace Eqs.~8! and~15!, thereby simplifying the
calculation of the average occurrence interval and failure risk
the presence of persistence. Relative errors for the approxima
of r and the associated errors in the estimation ofE(T) andR are
summarized in Douglas~2002!. In general, relative errors for the
approximation ofr are less than 4% forp>0.1, but grow larger as
p decreases, ranging from 2.3 to 7% atp50.05 and from 4.3 to
15% at p50.01 ~Fig. 3!. The average normalized root-mea
square error for the approximation ofr is 1.5%; for the approxi-
mation of E(T) it is 15%, and for the approximation ofR it is
0.6%.

Effect of Persistence on Average Occurrence Interval,
Low Flow Quantiles, and Risk

Fig. 4 illustrates the effect of streamflow persistence on the a
age occurrence interval,E(T), calculated from Eq.~12! @using
Eqs.~16!–~19! to approximate the autorun coefficient,r#. Fernan-
dez and Salas~1999a! present a similar figure, except withE(T)
as a function ofp for selected values ofr. For all levels ofp,
E(T) increases as persistence increases. This is expected d
differential persistence, which is the phenomenon whereby hig
values of persistence make it more likely to remain in a drough
one is already in a drought. Forp50.5, E(T) ranges from two
years atr50.0 to 6.1 years atr50.95. Forp50.01,E(T) ranges
from 100 years atr50.0 to 327 years atr50.95. Within the
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observed range of at-site estimates ofr ~0.0–0.8!, E(T) increases
by 66% forp50.01, 75% atp50.02, and 98% forp50.1. This
means that for theQ7,10, the average occurrence interval could
underestimated by nearly 100% using the conventional metho
E(T)51/p.

The effect of persistence on the seven-day, 10-year low fl
(Q7,10) is illustrated in Fig. 5. Annual minimum seven-day lo
flows were assumed to follow a three-parameter lognormal~LN3!
probability distribution, which is obtained by letting ln(X2t) be
normally distributed. The LN3 model for theQ7,10 quantile is

Q7,105t1exp~m1sZp! (20)

wheret5lower bound;m ands5mean and standard deviation o
ln(X2t); and Zp5F21(p), the inverse cumulative distributio
function of a standard normal variate. For the illustrative purpo
of this section,t was set equal to zero, reducing the distribution
two-parameter lognormal. The LN3 distribution is used in a la
section. For independent low flows,p51/E(T) or 0.1 in the case
of the Q7,10. However, whenE(T) remains constant~i.e., 10
years!, the value ofp increases with persistence.Zp for r ranging
from 0.01 to 0.99 and for coefficients of variation (Cv) from 0.1
to 10 was calculated by specifyingCv , settingE(T)510 years,
and solving Eqs.~16!–~19! simultaneously forp. Fig. 5 illustrates
that asCv increases, so too does the ratio of the low flow statis
based on serially correlated flows,Q7,10(r), to the low flow sta-

Fig. 3. Comparison of exact~curves! and approximate values~x! of
autorun coefficientr as function of lag-one serial correlationr, for
selected values ofp. Approximate values ofr are calculated with Eqs
~16!–~19!.

Fig. 4. Variation in average occurrence interval,E(T), with r for
selected values ofp
f

tistic based on independent flows,Q7,10(0). Forwatersheds with
low Cv ~less than 1!, the effect of persistence on quantile estim
tion is somewhat subdued. For instance, within the obser
range of at-site estimates ofr ~0.0–0.8!, the Q7,10 quantile in-
creases only 4.5% atCv50.1. For streamflows with higherCv ,
the effect of persistence becomes much more dramatic. ForCv
51, theQ7,10 estimate increases by 56%~ratio of 1.56! at r50.8,
and for Cv55, the ratio is 9.1. At very large values, the ratio
increase even faster. ForCv510, the ratio atr50.1 is 1.24, the
ratio atr50.2 is 1.62, atr50.5 the ratio is 5.5, and atr50.8, the
ratio increases to 83. The range of theL2Cv values for annual
minimum flows across the U.S. is illustrated in Figs. 7 and 8
Vogel and Wilson~1996!. Those values can be converted to
range inCv values using Fig. 8 in Limbrunner et al.~2000!.

Figs. 6 and 7 illustrate the impact of serial correlation on
failure risk,R. The presence of persistence causesR to grow more
slowly with time. For example, with a 25-year design life andp
50.1, the risk of failure is 23% lower atr50.8 (R50.72) than at
r50.0 (R50.93). Another way to look at this is, for a specifie
risk, the design life increases as streamflow persistence incre
For instance, the horizontal dashed line in Fig. 6 representR
50.65. By defining the design occurrence interval as the aver
occurrence interval and equating this to the expected life of

Fig. 5. Impact of persistence onQ7,10 estimates as function ofCv

Fig. 6. Effect of persistence on risk of failure~R! and design occur-
rence interval forp50.1. Dashed line represents a specifiedR
50.65. Design occurrence interval is set equal to the average oc
rence interval.
JOURNAL OF HYDROLOGIC ENGINEERING / MAY/JUNE 2002 / 223
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engineered system, the expected life increases from 10 yea
r50.0 to 12 years~a 20% increase! at r50.4 and 20 years~a
100% increase! at r50.8. Clearly, incorporating the effects o
persistence into hydrologic design can be beneficial because
expected life of a system will be longer when persistence is
counted for. Figs. 7~a–c! are plots of design occurrence interva
at specified values ofR for p50.01, 0.02, and 0.1, which corre
spond to conventional design return periods of 100, 50, and
years, respectively.

Fig. 7. ~a! Design occurrence interval at specified values of risk
failure ~R! for p50.01; ~b! Design occurrence interval at specifie
values of risk of failure~R! for p50.02; ~c! Design occurrence in-
terval at specified values of risk of failure~R! for p50.1 ~assumes
that design occurrence interval is equal to average occurrence i
val!
224 / JOURNAL OF HYDROLOGIC ENGINEERING / MAY/JUNE 2002
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Effect of Streamflow Persistence on Hydroeconomic
Analysis

Chow et al.~1988! showed that the optimum design occurren
interval can be determined by knowing the probability of failu
in any one year and the damage cost associated with this fai
As the design occurrence interval increases, the capital cost
structure increases~because the magnitude of the event increas!
but the expected cost of damages~or risk cost! decreases becaus
the probability of occurrence decreases. The optimal design
currence interval is the average occurrence interval that m
mizes the sum of the capital cost and expected risk cost. The
cost,D0 , is the product of the annual probability,f (x)dx, of an
event of magnitudex, and the expected damage,D(x), resulting
from the event, integrated forx.x0

D05E
x0

`

D~x!• f ~x!dx (21)

Neither the exceedance probability of an event@p5*x0

` f (x)dx#

nor the risk cost,D0 , which is based on both the magnitude a
the probability of the event, is influenced by persistence. Ho
ever, as we have already shown, the average occurrence int
associated with each event is influenced by persistence. Fig.
an extension of Example 13.2.3 in Chow et al.~1988!. By intro-
ducing a modest value of streamflow persistence~r50.3! into the
analysis, the total cost curve~sum of capital and risk costs! is
shifted to the right, resulting in the optimal design occurren
interval increasing from 25 years~as in the original analysis! to
28 years. This means that the expected design life of this sys
~if assumed equal to the optimal occurrence interval! is three
years~12%! greater than it would have been if persistence h
been ignored.

Impact of Persistence on Low Flow Risk Estimation
in the United States

Fernandez and Salas~1999b! demonstrated the effects of persi
tence on low flow quantiles, risk, and occurrence interval estim
tion using natural streamflow records in Colorado and Argent
Tasker~1983! used Monte Carlo simulations to compute effecti
record lengths for low flow quantiles estimated from specifi
values of record length and streamflow persistence. To investi
the general effect of incorporating streamflow persistence on
drologic design parameters, we computed the average occurr
interval and the seven-day, 10-year low flow quantile (Q7,10) ac-
counting for persistence at over 1,000 sites across the U.S. T
estimates were then compared to the average occurrence inte
and quantiles computed by conventional methods that ignore
impact of persistence.

Analyses in this study were performed using historical aver
daily streamflow records contained in the Hydro-Climatic Da
Network, a dataset compiled by Slack et al.~1993! for 1,571
gauging stations across the continental U.S. Results were sum
rized for the 18 water resources regions illustrated in Fig. 9. L
flows were assumed to follow an LN3 distribution andQ7,10

quantiles were estimated using Eq.~20!. The following estimators
of the LN3 distribution parameters were used~Loucks et al.
1981!:

t̂5
x~1!x~n!2 x̂0.50

2

x~1!1x~n!22x̂0.50
(22)

r-
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m̂5 lnF x̄2 t̂

A11sx
2/~ x̄2 t̂ !2G (23)

ŝ25 lnF11
sx

2

~ x̄2 t̂ !2G (24)

Records that contained zero flow values were excluded from
analysis because Kroll and Vogel~2002! found that streamflow
records that contain zeros have very different distributions t
those without zeros, and records with zero flows are poorly
proximated by an LN3 distribution function.

Fig. 10 shows the variability ofE(T) estimates@using Eq.
~12!# for 1,048 stations across the United States. Median va
range from 10.2 years in region 1~New England! to 12.9 years in
region 8 ~lower Mississippi River!. Upper quartiles range from
10.6 years in region 1 to 13.5 years in region 8. The maxim
value in each region ranges from 12.3 years in region 1 to 2
years in region 17~Pacific Northwest!. These results indicate tha
while the effect of persistence on average occurrence interva
timates is at most 3.5% for three-quarters of the stations ev
ated,E(T) estimates in each region can be from 23 to greater t
100% higher thanE(T)510 years estimated by the convention
method,E(T)51/p.

Fig. 11 illustrates the quantile ratios@Q7,10(r)/Q7,10(0)# sum-
marized for the same stations. Ratios higher than one indicate
the Q7,10 quantile estimated by our method is higher than wo
be estimated by conventional methods~with constantp50.1!.

Fig. 8. Optimal design occurrence interval with persistence~28
years! and without persistence~25 years!; modification of example
13.2.3 in Chow et al.~1988!

Fig. 9. Water resources regions used for this study
-
-

t

Values ofCv for theQ7,10 flows ranged from 0.1 to 1.7; therefore
the impact of persistence on quantile ratios for these stations
expected to be small to moderate~Fig. 5!. Median quantile ratios
range from 1.004 in region 1 to 1.068 in region 7~upper Missis-
sippi River!. Upper quartiles ranged from 1.017 in region 1
1.155 in region 12~Texas Gulf!. The maximum ratio in each
region ranged from 1.090 in region 1 to 1.855 in region 10~Mis-
souri River!. In all regions, there were stations where the conv
tional method of quantile estimation would underestimateQ7,10

flows by at least 9%. In nine of the 18 regions~regions 2, 3, 4,
9–13, 17, and 18!, there were stations where this underestimat
would be 20% or more.

At-site estimates of the lag-one autocorrelation coefficient (r 1)
for LN3-transformed flows@ ln(X2t)# were used to estimateE(T)
at each site. A summary of at-siter 1 values for each region is
included in Table 1. These at-site estimates ranged from less
0 ~in which caser 1 was set equal to 0! to 0.848. At-site estimates
of r 1 for the untransformed flows ranged from less than 0
0.841. There is enormous sampling variability associated w
at-site estimates of lag-one correlation coefficients, and regio
estimates may reflect the serial correlation structure better
the at-site estimates~Vogel et al. 1998!. However, not having per-
formed the type of sampling experiments as did Vogel et
~1998! for annual flow series, we were unsure of the size of
region needed to ensure homogeneity.

Fig. 10. Box plots ofE(T) estimates ofQ7,10 for stations across the
U.S. Each box plot represents the distribution ofE(T) estimates for
individual stations within each region.

Fig. 11. Box plots ofQ7,10 quantile ratios for stations across the U.
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Conclusions

We defined the average occurrence interval,E(T), as the ex-
pected time to the first event of interest. Here an event is defi
as the exceedance~or nonexceedance! of some threshold event
The risk associated with an event,R, was defined as the probabi
ity of at least one event over the design life of the system. C
ventional methods for estimatingE(T) and R generally ignore
serial correlation~persistence! in streamflow. This is largely be
cause traditionally, engineers have worked with the concept
recurrence interval, which is the time intervalbetweentwo events,
as opposed to the occurrence interval, which is the time to the
event. The recurrence interval is not influenced by the persiste
of the flow process, whereas the occurrence interval is. The
currence interval is better suited to hydrologic design proble
because it does not require the engineer to make assump
about initial conditions, prior to the design life. However, if th
occurrence interval is to find use in practice, one should incl
the impacts of persistence in the calculation.

By defining p as the probability of the event, regardless
whether that event is defined by the exceedance or nonexceed
of a threshold value, equations for estimating the expected oc
rence intervalE(T) and riskR in the presence of persistence we
derived. This study has shown that for observed ranges of stre
flow persistence,E(T) can be up to 98% greater andR can be
23% or more lower than conventional estimates. This means
the expected design life of a system is longer when persisten
taken into account. An evaluation of historical low flow data
over 1,000 sites across the United States indicates thatE(T) es-
timates for theQ7,10 at some stations in each region were 20
.100% higher thanE(T)510 years estimated by the conve
tional method, and that quantile estimates at stations in half of
regions were underestimated by 20% or more.
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Notation

The following symbols are used in this paper:
E(T) 5 average occurrence interval;
E(W) 5 average recurrence interval;

N,n 5 sample size, i.e., number of years of record, de-
sign life;

p 5 probability of failure;
pf s 5 probability that failure year follows safe~nonfail-

ure! year;
ps f 5 probability that safe~nonfailure! year follows fail-

ure year;
Qp 5 quantile;

q 5 probability of operating in safe~nonfailure! state;
R 5 failure risk, probability of at least one failure over

life of system;
r 5 autorun coefficient, probability of two successive

failure years;
r 1 5 at-site estimate of lag-one autocorrelation coeffi-

cient;
T 5 occurrence interval;
U 5 state ofX ~failure or nonfailure! relative to thresh-

old value;
X 5 annual statistics, i.e., annual maximum streamflow,

annual low flow;
X0 5 design threshold, i.e., design flood, critical deficit;
Zp 5 inverse cumulative distribution function of stan-

dard normal variate5F21(p);
m,s 5 mean and standard deviation of normal distribu-

tion;
r 5 lag-one autocorrelation coefficient; and
t 5 lower-bound parameter of three-parameter lognor-

mal distribution~LN3!;
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