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ABSTRACT

Probable maximum precipitation (PMP) is the conceptual construct that defines the magnitude of extreme
storms used in the design of dams and reservoirs. In this study, the value and utility of applying multifractal
analysis techniques to systematically calculate physically meaningful estimates of maximum precipitation from
observations in the eastern United States is assessed. The multifractal approach is advantageous because it
provides a formal framework to infer the magnitude of extreme events independent of empirical adjustments,
which is called the fractal maximum precipitation (FMP), as well as an objective estimate of the associated risk.
Specifically, multifractal (multiscaling) behavior of maximum accumulated precipitation at daily (327 rain gauges)
and monthly (1400 rain gauges) timescales, as well as maximum accumulated 6-hourly precipitable water fluxes
for the period from 1950 to 1997 were characterized. Return periods for the 3-day FMP estimates in this study
ranged from 5300 to 6200 yr. The multifractal parameters were used to infer the magnitude of extreme precip-
itation consistent with engineering design criterion (e.g., return periods of 106 yr), the design probable maximum
precipitation (DPMP). The FMP and DPMP were compared against PMP estimates for small dams in Pennsylvania
using the standard methodology in engineering practice (e.g., National Weather Service Hydrometeorological
Reports 51 and 52). The FMP estimates were usually, but not always, found to be lower than the standard PMP
(FMP/PMP ratios ranged from 0.5 to 1.0). Furthermore, a high degree of spatial variability in these ratios points
to the importance of orographic effects locally, and the need for place-based FMP estimates. DMP/PMP ratios
were usually greater than one (0.96 to 2.0), thus suggesting that DPMP estimates can provide a bound of known
risk to the standard PMP.

1. Introduction

Determining the largest flood possible at a location
is often necessary when designing high-hazard struc-
tures, such as flood control dams upstream of populated
areas, for maximum reliability and safety. In the case
where the risk of dam overtopping is deemed unac-
ceptable, an estimate of the probable maximum precip-
itation (PMP) depth is used to determine the probable
maximum flood (PMF) for that location. Use of the PMP
to generate the PMF has become the standard for dam
design in many parts of the world including the United
States, China, India, and Australia (Svensson and Rak-
hecha 1998). The PMP is defined as the ‘‘theoretically
greatest depth of precipitation for a given duration that
is physically possible over a given size storm area at a
particular geographical location at a certain time of the
year’’ (Hansen et al. 1982). Prior to the 1950s, the con-
cept was known as the maximum possible precipitation
(MPP). The name was changed to the PMP reflecting
the uncertainty surrounding any estimate of maximum
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precipitation (Wang 1984). There is no knwon way to
develop the PMP from first principles (NRC 1994) and
proposed estimation methodologies have been the sub-
ject of much debate. By definition, the PMP is the es-
timated precipitation depth for a given duration, drain-
age area, and time of year for which there is virtually
no risk of it being exceeded (Wang 1984). However, the
fact that measured rainfall depths have exceeded PMP
estimates in the past clearly indicates that the PMP ap-
proach ‘‘by no means implies zero risk in reality’’
(Koutsoyiannis 1999).

Graham (2000) criticized the use of current PMF stan-
dards for high-hazard dam spillway design. He noted
that by using the PMF as a safety evaluation standard,
most inspected nonfederal dams would have been
deemed unsafe and, to adhere to current PMF design
standards, the total retrofitting cost would amount to
approximately $75 billion. With this in mind, we in-
vestigate an alternative method for estimating maximum
precipitation and associated risk for use in engineering
design. We do so by first characterizing the scaling be-
havior of observed maximum precipitation depths and
evaluating how these characteristics differ in both space
and time. Recognizing that any estimates based on ob-
servations will be limited by the duration and quality
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of the historical record, we propose to call this event
fractal maximum precipitation (FMP). We then apply
multifractal principles to extrapolate the magnitude of
exceptional precipitation events for specified exceed-
ence probabilities (Pe 5 1 1026), the design probable
maximum precipitation (DPMP).

a. Methods of PMP estimation

PMP estimation methods fall into the following gen-
eral categories: the storm model approach; the maxi-
mization and transposition of individual observed
storms; generalized (regionalized) methods; theoretical
or empirical methods derived from maximum depth, du-
ration, and area observations; and statistical methods.
The storm model approach uses physical parameters,
such as surface dewpoint, height of storm cell, and in-
flow and outflow, to represent the precipitation process
(Collier and Hardaker 1996). Storm transposition in-
volves translating observed storm characteristics from
one or more gauged locations to the location where the
PMP estimation is required (typically an ungauged lo-
cation). Storm maximization consists of adjusting ob-
served precipitation amounts upward to account for
maximum atmospheric moisture convergence. Gener-
alized PMP methods are often developed by maximizing
and translating classes of storms over a broad region;
storm classification in turn is based on the storm type,
that is, convective or cyclonic (NWS 1988), and/or
storm efficiency defined as the ratio of maximum ob-
served rainfall to the amount of precipitable water in
the storm column (Collier and Hardaker 1996). Factors
that influence storm efficiency include atmospheric con-
vergence; vertical velocity by frontal, convective, or
topographically induced lifting; and the rate of water
vapor condensation (Barros and Lettenmaier 1994;
Svensson and Rakhecha 1998, and many others). Oro-
graphic effects are typically accounted for by adjusting
PMP estimates derived for nonorographic regions.

Although the PMP has a theoretical exceedence prob-
ability of zero, meaning that it is so large that it will
never be exceeded, this is not the case in reality. Con-
sequently, a few studies have sought to assign a risk
statement to PMP estimates. The National Research
Council (NRC 1994) estimates the return period of the
PMP in the United States as between 105 and 109 yr.
Koutsoyiannis (1999) developed a rather straightfor-
ward method for assigning a return period to PMP val-
ues estimated using the frequency factor method (Hersh-
field 1961, 1965):

h 5 h 1 k s ,m n m n (1)

where hm is the maximum observed rainfall depth at the
site of interest, n and sn are the mean and standardh
deviation of the annual maximum precipitation series
for site m, and km is the frequency factor. Hershfield
(1961) recommended km 5 15 for estimating the PMP,
because it was the largest factor obtained from an anal-

ysis of 2645 stations (90% were from the United States).
Later, Hershfield (1965) showed that km varied with rain-
fall duration and mean value and presented a nomograph
for determining km for 5-min, 1-h, 6-h, and 24-h du-
rations of mean annual maximum rainfall. Koutsoyian-
nis (1999) fit a generalized extreme value (GEV) dis-
tribution to the frequency factors computed from the
2645 record used by Hershfield and found that the larg-
est factor (km 5 15) corresponds to a return period of
about 60 000 yr, which falls at the low end of the NRC
(1994) range. Foufoula-Georgiou (1989) investigated a
storm transposition approach for assessing the frequen-
cy of extreme precipitation depths, but stressed the need
for further research before applying the method to the
PMP and PMF.

b. PMP estimation in the United States

The National Weather Service (NWS) has published
and updated numerous hydrometeorological reports
(HMRs) for estimating the PMP in different regions of
the United States: HMR 59 (NWS 1999) for California,
HMR 57 (NWS 1994) for the Pacific Northwest and
Columbia Plateau regions, HMR 49 (NWS 1984) for
the Southwest and basin and range regions, HMR 55A
(NWS 1988) for the region east of the Continental Di-
vide and west of the 1058 meridian, and HMR 51 (NWS
1980a), HMR 52 (NWS 1982) and HMR 53 (NWS
1980b) for the United States east of the 1058 meridian.
HMR 52 outlines a procedure for preparing site-specific
PMP estimates from the generalized storms presented
in HMR 51. PMP estimation methods for smaller re-
gions have also been published: HMR 54 for southeast
Alaska (NWS 1983) and HMR 56 for Tennessee River
drainages (NWS 1986). These reports can be found on
the World Wide Web (http://www.nws.noaa.gov/oh/
hdsc/studies/pmp.html). The NWS approach for esti-
mating the PMP generally has three major components:
moisture maximization, transposition to the location of
interest, and envelopment of the maximized transposed
depth-duration and depth-area amounts. Moisture max-
imization (adjusting record storm depths to account for
what would have occurred with maximum atmospheric
moisture) has traditionally been evaluated using the
maximum persisting 12-h, 1000-hPa dewpoint, but in
the most recent reports, moisture maximization based
on sea surface temperatures was included. Storm trans-
position has been necessary in many cases due to the
lack of local storm data, particularly in sparsely pop-
ulated mountainous regions. Storm transposition for
PMP estimation over the Appalachians and along the
eastern seaboard required adjustments due to barrier ef-
fects and the fact that intensity of tropical storms drops
off quickly with distance inland (NWS 1980a). Envel-
opment has been accomplished using smoothed isohy-
etal contours to generalize the maximized and trans-
posed storm data, offering regionally consistent mapped
values of PMP estimates. The shape of these isohyets
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takes into account regional storm tracks and the regional
distribution of maximum rainfall depths and atmospher-
ic moisture.

The effect of complex terrain on moisture maximi-
zation and transposition complicates PMP estimation
considerably and has been dealt with in different ways.
In HMR 55A (NWS 1988), the region between the 1038
and 1058 meridians was first classified into orographic
and nonorographic subregions delineated by an oro-
graphic separation line. The orographic region was fur-
ther separated into ‘‘first upslopes’’ (areas of broader
but more gradually increasing slope) and ‘‘secondary
upslopes,’’ assuming that the first upslopes generally
have the greatest effect on precipitation production. Oth-
er classifications within the orographic region were shel-
tered orographic subdivisions, relatively flat areas in
which moisture transposition was affected by surround-
ing mountains, and ridges high enough to remove nearly
all of the moisture from incoming air masses. Prior to
analysis, storms were classified with respect to the type
of terrain in which they occurred, and moisture maxi-
mization and storm transposition were adjusted accord-
ingly. In California, mountains were found to sometimes
shield an area from intense precipitation so both the
enhancing and shielding effects of the terrain had to be
accommodated by introducing a K factor, a percentage
that either increases or decreases the nonorographically
derived convergence precipitation.

In general, the PMP estimation method for areas east
of the 1058 meridian does not rigorously account for
orographic effects. The exception to this is in HMR 56
(NWS 1986), where orographic effects in the Tennessee
River valley were evaluated. Here, no clear spatial or-
ganization of events was evident and only slight in-
creases in maximum precipitation amounts due to oro-
graphic effects were observed. HMR 51 (NWS 1980a)
explicitly cautions potential users with regard to ‘‘de-
ficient’’ PMP estimates over the Appalachian Moun-
tains, an area that extends from northern Georgia into
western Maine, and covers large sections of New Eng-
land and the mid-Atlantic states. The need for a PMP
method that accounts for orographic effects in this re-
gion was clearly illustrated by Barros and Kuligowski
(1998) who found striking evidence of the linkages be-
tween the spatial organization of heavy precipitation and
floods on the one hand, and landform in the Appalachian
Mountains of Pennsylvania on the other. While the
events are not necessarily PMP-magnitude events, Bar-
ros and Kuligowski illustrated how record floods in
headwater catchments were associated with orographic
enhancement of extreme precipitation events. This is
consistent with the cautionary notes in HMR 51 referred
above.

c. Multifractal behavior of precipitation

Atmospheric processes consist of multiple highly
nonlinear, complex dynamical processes (systems) that

interact with each other either continuously (as with
radiation transfer) or intermittently (as with precipita-
tion). Frisch and Parisi (1985) developed a multipli-
cative cascade model by noting the conditional self-
similarity of fully developed turbulence (describing it
as a ‘‘hierarchical embedding of bursts within bursts as
one proceeds to smaller and smaller scales’’) and de-
veloping a multifractal model consistent with a variety
of observations in fully developed turbulence (Mene-
veau and Sreenivasan 1987). Lovejoy and Schertzer
(1985, 1990) and Gupta and Waymire (1990) indepen-
dently applied the multifractal (multiscaling) approach
to describing the scaling behavior of rainfall and stream-
flow.

The multiplicative cascade model as applied to at-
mospheric phenomena can be understood by envisioning
a large-scale eddy of characteristic length L being bro-
ken up into smaller subeddies whose length is equal to
L/l i, i 5 1, . . . , n, where l is the scale ratio. In the
case of rainfall, Gupta and Waymire (1990) describe
this phenomenon as clusters of high-intensity rainfall
cells embedded within clusters of lower-intensity me-
soscale cells, which are in turn embedded within a syn-
optic-scale lowest-intensity rainfall field (convection
embedded in stratiform rainfall). Scale-invariant mul-
tiplicative cascades, such as described above, generi-
cally give rise to universal multifractals (Tessier et al.
1993). In fact, using satellite cloud images at both vis-
ible and infrared wavelengths over scales spanning 1–
5000 km, Lovejoy et al. (2001) were able to show that
variability at all observed scales and at all levels of
intensity was very close to that predicted for a direct
multiplicative scale-invariant cascade beginning at the
planetary scale.

In the analysis of geophysical processes (i.e., turbu-
lence, rainfall), we are almost always forced to analyze
measurements that have been averaged over some small
but finite sampling area with side l . 0 (i.e., the ob-
serving scale). The geophysical field in its original state
is known as ‘‘bare,’’ while the measured field is known
as ‘‘dressed.’’ Gupta and Waymire (1990) illustrated two
important points with respect to the scaling properties
of rainfall: 1) a spatially averaged (dressed) field scales
with the same exponent as the original (bare) field, and
2) the scaling properties of rainfall fields, as well as
other geophysical phenomena such as turbulent veloc-
ities and river flows, do not follow simple scaling be-
havior but are instead multiscaling (multifractal). Unlike
simple scaling, in which the scaling exponent is a con-
stant, the multifractal exponent is a function. Multifrac-
tal scaling properties can be described by the following
two equations (Halsey et al. 1986; Meneveau and Sreen-
ivasan 1987; Schertzer and Lovejoy 1987):

g« } l for l . 1 and (2)l

g 2c(g)Pr(« . l ) ø l , (3)l

where Pr( ) denotes probability; « is the intensity (i.e.,
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accumulated depth divided by duration) of a conser-
vative field; l is the scale ratio, which for time series
is computed as the T/t; the length of the time series (T)
divided by the duration of interest (t); «l is the con-
servative field at scale ratio l; g is an order of singu-
larity (maximum); and c(g) is the convex functional
scaling exponent known as the codimension. The con-
vex nature of c(g) implies a decrease in variability with
respect to an increase in scale or vice versa (Gupta and
Waymire 1990). There is a one-to-one correspondence
between c(g), the scaling exponent in Eq. (3), and K(q),
the scaling exponent of the statistical moments of the
field (Shertzer and Lovejoy 1992):

q K(q)^« & 5 l for l . 1. (4)l

Here q is the order of the statistical moment and ^ &
denotes the average of the field at scale l. Olsson et al.
(1993), Olsson (1995), and Tessier et al. (1996) utlized
the relationship in Eq. (3) to evaluate the scaling prop-
erties of rainfall and river flows and cloud reflectance.
Purdy et al. (2001) relied on the formalism of Eq. (4)
to evaluate orographic effects during a single rainfall
event along an orographic transect in the South Island
of New Zealand. The double trace moment (DTM)
method (Lavallee et al. 1991; Veneziano and Furcolo
1999), a relatively recent method for estimating mul-
tifractal parameters, is based on moment scaling. The
DTM is discussed in more detail in section 2.

d. Multifractals and the PMP

A fundamental assumption underlying the concept of
the PMP is that there exists some combination of phys-
ical conditions that would lead to a bounding precipi-
tation event; in other words, for a given location there
is a maximum amount of rainfall that can physically
occur. The problems encountered when attempting to
estimate extreme events (especially one that is consid-
ered to be an upper bound of the process) using con-
ventional methods (i.e., frequency analysis or modeling)
are twofold. First, the fitted probability distribution or
the model that describes the majority of the historical
time series (i.e., within two standard deviations of the
mean) does not always capture the extremes. This re-
flects the fact that extreme events are often generated
by unusual weather conditions instead of the climatol-
ogy. There are also far fewer extreme observations with
which to fit the distribution or calibrate the model. Sec-
ond, we are very often forced to extrapolate well beyond
the time frame of the observations (i.e., predicting the
100-yr storm with only 50 yr of rainfall data). This is
especially critical when attempting to estimate a quan-
tity such as the PMP, for which the risk of exceedence
is theoretically nil. Multifractals allow us to infer the
statistical properties of precipitation fields over well-
defined ranges of scale from the statistical properties at
the measurement timescale, including extreme events

(Schertzer and Lovejoy 1992; Lovejoy and Schertzer
1995).

Previously, Hubert et al. (1993) presented a multifrac-
tal approach for estimating the PMP, an approach that
attempts to link the physical processes that generate
precipitation events to the conceptual model of multi-
plicative cascades, and allows the PMP estimation prob-
lem to be cast in a probabilistic framework. Following
Hubert et al. (1993), whenever there is a maximum sin-
gularity, gmax, within a duration t, the maximum ac-
cumulation, Al, within that duration will be

« Tl g 21 12gmax maxA 5 } l } t . (5)l l

Even if the singularity is theoretically unbounded, the
maximum order of singularity in a finite sample will
always be bounded due to spurious scaling artifacts re-
sulting from undersampling. Thus, in applying Eq. (5),
it is implicit that we are predicting the maximum event
for a finite (albeit very long) time series. Furthermore,
following Lovejoy and Schertzer (1995), physically ob-
servable multifractals belong to the class of universal
multifractals, and thus, the actual physics that give rise
to gmax are not relevant per se. Therefore, the multifractal
representation captures the statistical properties of the
observations independently of when or how extreme
precipitation came to be. Universal multifractals are
convenient because only two parameters, a and C1, need
to be estimated:

 a9
g 1

C 1 for a ± 1 and1 1 2C a9 a1c(g) 5  (6)
g

C exp 2 1 for a 5 1, 1 1 2C1

where 1/a9 1 1/a 5 1. Here C1 is the codimension of
the mean process 2{C1 5 C[K(q 5 1)]} # 1 for a time
series, and measures the sparseness of the data; a is the
Levy index, which ranges between 0 and 2 and indicates
how strongly the process deviates from monofractal be-
havior (i.e., for simple scaling a 5 0) by specifying to
which type of process the probability distribution belongs
(Olsson et al. 1993). For 0 # a , 1 and considering a
time series of infinite length, a finite maximum order of
singularity, g 0, can be determined as follows:

C1g 5 (7)0 1 2 a

(Schertzer and Lovejoy 1992; Hubert et al. 1993). When
analyzing geophysical measurements, we are always
limited by the fact that we must use time series of finite
length to characterize the multifractal behavior. In that
case, the observed singularities will be bounded by an
effective maximum singularity, g s:

21/a9C1g 5 g 1 2 a , g , (8)s 0 01 2[ ]D
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FIG. 1. Region of analysis and locations of HCN daily and
monthly stations.

where D is the embedding space dimension (D 5 1 in
the analysis of the time series). The total dimension of
this problem is actually (D 1 Ds), where DS 5 logNS/
logl is the sampling dimension, and Ns is the number
of independent time series at each location. ([Here Ns

5 1 and Ds 5 0].) In the case of ‘‘soft’’ multifractals
(0 , a , 1, such as rainfall), if g 0 $ g s D and g 0,,
then the maximum effective singularity (reachable max-
imum event based on the observations) has a codimen-
sion that varies linearly with K(q) for q . qD as follows
[Eq. (9) replaces Eq. (6)]:

c(g) 5 q g 2 K(q ) for g # g # g , (9)D D D s

where qD and g D are the critical orders of moments and
singularities, respectively (Schertzer and Lovejoy
1992). This corresponds to a transition to self-organized
criticality for g $ g D (‘‘conditionally soft’’ multifrac-
tals) characterized by scale invariance, divergence of
higher-order statistical moments, and falloff of the tail
of the probability distribution (Schertzer and Lovejoy
1992; Schertzer et al. 1997). In the context of the theory
of universal multifractals, qD should be a universal con-
stant characteristic of rainfall processes. There is how-
ever no clear agreement in the literature as to what such
a value should be. Variations between 1.7 up to 5 have
been attributed to differences in rainfall intensity and
rainfall physics, orography, temporal resolution of the
observations, and length of the time series (e.g., Olsson
1995; Purdy et al. 2001). Nevertheless, common values
range from slightly below 2 to a little above 3. In this
paper, the number of time series analyzed exceeds pre-
vious work by two to three orders of magnitude, albeit
with coarser temporal resolution (1 day versus minutes
or hours). We find values of qD 5 2 6 0.2, thus in the
expected range. This will be discussed further in section
3c.

e. Purpose and objectives of this study

Because deficiencies in PMP estimates result in sim-
ilar deficiencies in PMF determination, Dawdy and Let-
tenmaier (1987) suggested a risk-based approach to hy-
draulic design criteria. The final recommendation on this
issue made by the National Research Council (NRC
1994, p. 21) was that ‘‘strategies be investigated for
estimating the probabilities of extreme rainfalls, using
the best available concepts and methods of meteorology
and statistics.’’ To that end, we describe an alternative
approach to PMP estimation by investigating the ap-
plicability of multifractals for estimating extreme pre-
cipitation events for the eastern United States. We call
these estimates the fractal maximum precipitation
(FMP) and they represent maximum events empirically
derived using the scaling behavior of the observations.
This method yields parameters for estimating both the
magnitude and risk of extreme events, essential criteria
in engineering design and decision making. That is, for
a desired exceedence probability (pe), it is possible to

infer from Eq. (3) the corresponding value of the codi-
mension c(g e), which can then be used to estimate the
magnitude of an event with the specified risk. In ad-
dition, we evaluate the effects of terrain and interdecadal
climate variability on precipitation statistics, and thus
multifractal parameters, and compare maximum precip-
itation estimates from the multifractal approach to those
used in standard practice.

2. Methodology

a. Precipitation data

We evaluated the scaling behavior of precipitation in
the midwestern and southeastern United States using
327 daily and 1400 monthly time series from the U.S.
Historical Climate Network (HCN; Karl et al. 1990).
Within this region, there are 349 daily and over 3000
monthly HCN stations; however, many of the time series
are short or discontinuous. For the sake of a consistent
analysis, we did not use all HCN sites nor did we use
the entire record at selected sites. Instead, we evaluated
precipitation data collected between 1950 and 1997, a
time frame that maximized both the spatial density and
temporal continuity of the time series in the region of
interest. The analysis domain and the locations of the
daily and monthly stations used in this study are shown
in Fig. 1. When an entire month was missing in a daily
or monthly time series, it was filled with average values
calculated from the same months in the preceding and
following years, preserving the interannual variability
as much as possible. Individual missing days in the daily
time series were filled with the time series average. Val-
ues for 29 February were ignored. Scaling breaks were
identified by evaluating maximum normalized accu-
mulations and statistical moments over durations rang-
ing from 1 day to 20 yr. Sample codimensions, c(g s)
(hereafter simply called codimensions), were computed
as the scaling slope of the maximum normalized ac-
cumulations between the scaling breaks. The interval
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over which c(g s) was calculated is denoted in brackets
([ ]).

b. Scaling parameter estimation

Early studies recommended using the time series av-
erages to nondimensionalize (normalize) the time series
so that they represented points along a line. Lovejoy
and Schertzer (1995) later reported that codimension
estimation is sensitive to the normalization method, and
recommended that the ensemble mean be used to nor-
malize all time series in the analysis. So that the nor-
malization of the time series would not confound the
interpretation of our spatial and temporal comparisons,
we used the regional mean computed from all time series
in this study to normalize (nondimensionalize) the data.
To compute codimensions, we first linearize Eq. (5) by
applying a logarithmic transformation as follows:

log(A ) 5 B 1 (1 2 g ) log(t)l max

5 B 1 c(g ) log(t), (10)s

where Al now represents the time series maximum nor-
malized accumulation for each different resolution (du-
ration) t and the term (1 2 gmax) represents the slope
[or codimension c(g s)] for Al between scaling breaks.
For instance, for t 5 1, the Al is the maximum observed
normalized daily (monthly) rainfall amount taken from
a daily (monthly) time series. For t 5 2, moving 2-day
(month) sums are computed and Al represents the max-
imum normalized 2-day (month) sum. This was done
for t ranging from the highest resolution (1 day or 1
month) to the lowest resolution (summation over the
entire time series). The codimension c(g s) and the in-
tercept B were computed from the slope of a plot of
log(Al) versus log(t) using linear regression. Then, gmax

was computed as 1 2 c(g s). We interpolated c(g s) val-
ues spatially across the entire study region using bilinear
interpolation of the station values. For consistency, spa-
tial fields could also be generated using fractal disag-
gregation techniques to capture small-scale variability
and orographic effects (Bindlish and Barros 1996; Kim
and Barros 2002). However, that type of analysis re-
quires careful evaluation of spatial scaling properties,
which is outside of the scope of this study.

c. Multifractal parameter estimation

To estimate the multifractal parameters a and C1, we
used the double trace moment technique used by Lav-
allee et al. (1991), Tessier et al. (1993), and Olsson
(1995), and the modified DTM technique presented by
Veneziano and Furcolo (1999). A double trace moment
is defined in Lovejoy and Schertzer (1995) as

q

h hq D K(q,h)2(q21)DTr (« ) 5 « d x } l . (11)Ol L E L7 1 2 8i Bl,i

As originally presented, this method entails raising the
field of interest « at its highest resolution L to various
powers of h. In our case, (# «LdDx) represents theBl,i

precipitation intensity field («) integrated over the scale
of interest (Bl,i) in the embedding space D (D 5 1 for
time series). For simplicity, this will be represented as

. For each value of h, is degraded to lower reso-h h« «L L

lutions of l by averaging over increasing durations, for
example, daily precipitation time series are degraded by
averaging over l 5 2, 3, and 4 days, and so on. The
degraded field ( )l is then raised to a fixed power qh«L

and the qth-order moment ^( & is obtained numeri-h q« )L l

cally by averaging the field. The moment scaling ex-
ponent K(q, h) is related to K(q), [K(q) 5 K(q, 1)], by

aK(q, h) 5 h K(q), (12)

so a is computed as the slope of a log–log plot of K(q,
h)/K(q) versus h. A value for C1 is determined by re-
arranging

aC (q 2 q)1 for a ± 1 or
a 2 1K(q) 5 (13)

C q log(q) for a 5 1 1

from Schertzer and Lovejoy (1992). The effective the-
oretical maximum g s and its codimension c(g s) are then
computed from Eq. (8) and Eq. (6), respectively [c(g s)
5 D 1 Ds 5 1 in our study as previously noted; Hubert
et al. (1993)].

According to Veneziano and Furcolo (1999), the
DTM method as originally presented yields unbiased a
estimates only for ‘‘bare’’ quantities (i.e., the geophys-
ical fields at their characteristic timescale, not that of
the observations). Consequently, estimates of a from
‘‘dressed’’ quantities (observations of the field averaged
over a finite sampling area) are biased when the original
method is used. Veneziano and Furcolo proposed a mod-
ified DTM method for application to dressed fields by
reversing the first two steps: «L is first degraded to a
lower resolution by averaging and then the lower-res-
olution result («L)l is raised to the power h and divided
by the expected value of («L , or («L /^(«L &, whereh h h) ) )l l l

^ & denotes the average over the degraded time series.
We applied both versions of the DTM and found only
small differences in a and C1 and essentially no differ-
ence in the final estimation of g 0 (see discussion in
section 3).

d. FMP and DPMP estimation

To estimate the magnitude of the FMP magnitude, we
used the slope and intercept from the regression model
for the parameters B and c(g s), respectively, in Eq. (10).
Subsequently, the inverse logarithm of Eq. (10) gives

B c(g )sFMP 5 10 l . (14a)

Return periods for the FMP estimates were computed
as 1/p where p (the exceedence probability associated
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with the FMP estimate) was obtained by substituting
c(g s) into Eq. (3). The discontinuity of the moment
scaling function at q 5 qD indicates a change in scaling
regime reflecting an increasing contribution of extreme
events to the magnitude of higher-order moments. Con-
sequently, the DPMP of the desired return period can
be inferred by replacing the scaling parameter in Eq.
(14a) by c(e), where e . D:

B c(g )eDPMP 5 10 3 l . (14b)

For comparison with our analysis of precipitation
data, we also computed codimensions estimates from
monthly and 6-hourly precipitable water data. Precipi-
table water data were obtained from the (National Cen-
ters for Environmental Prediction–National Center for
Atmospheric Research) reanalysis dataset. NCEP–
NCAR precipitable water data are vertically averaged
instantaneous values currently available at a 2.58 3 2.58
spatial resolution. Precipitable water fluxes were esti-
mated by assuming that the characteristic residence time
of the atmospheric column over a grid cell is determined
by the characteristic speed of major storm systems
(roughly 40 mi h21, or 62 km h21). The spatial reso-
lution of these is very coarse, but the recently completed
NCEP–NCAR reanalysis (R2) data were not available
during this study (Kanamitsu et al. 2002). Precipitable
water parameters were estimated in the same manner as
precipitation.

3. Results and discussion

a. Scaling behavior of daily and monthly
precipitation time series

Major temporal scaling breaks were found to occur
at 30 days (1 month) and 365 days (1 yr) as illustrated
in Fig. 2, which shows the daily and monthly scaling
behavior of three representative time series. For the dai-
ly data, scaling breaks for durations of less than 10 days
were found to vary from station to station (also seen in
Fig. 2). Consequently, the variability of estimated codi-
mension values was greatest for durations between 1
and 10 days. However, for durations greater than 10
days, all time series exhibited similar scaling behavior
with small variations around the regional ensemble
mean. For the daily data, codimensions were calculated
for short durations [(1–3) days, (1–4) days, (1–8) days]
as well as (1–30) days. The codimensions for durations
in this range were very similar in magnitude, but the
(1–30) day codimension values were less variable;
hence, they are deemed most appropriate for our anal-
ysis. Codimension values ranged from 0.01 to 0.49 for
(1–30) day (daily) and 0.32 to 0.82 for (1–12) month
(monthly; Fig. 3). These codimensions are of interest
in estimating the FMP and for understanding the effects
of terrain and climate variability on daily to annual ex-
treme precipitation events as will be explored in section
3c.

b. Multifractal parameters and FMP estimates from
daily precipitation time series

Before applying the DTM, the value of the critical
moment, qD, was evaluated in two ways: by investi-
gating the upper tail behavior of the empirical proba-
bility density function (pdf ) of the time series in log–
log space (as in Olsson 1995) and by determining the
point at which the relationship between K(q) and q be-
comes linear. Olsson (1995) reported a range of qD for
rainfall time series of ø1.7–3.0. Figures 4a and 4b show
the empirical pdf and K(q) function for an example time
series from our study. Figure 4a indicates a complex
tail behavior with two linear slopes, 2.1 and 3.3, de-
termined by linear regression. Two distinct slopes, and
thus two phase transitions, were evident only in time
series with maxima greater than approximately 20 cm
(8 in.) day21 [similar complex tail behavior was also
noted in Fraedrich and Larnder (1993)]. Other less ex-
treme time series had only one linear slope similar to
Olsson (1995, Fig. 1). Linearity in the example K(q)
function (Fig. 4b) occurred at approximately q 5 2 with
a second break in slope evident at approximately q 5
3.4 (corresponding to the slope of 3.3 in Fig. 4a). These
breaks are subtle and easier to detect when plotted in
log–log space instead of linear space. By evaluating
selected time series in this manner, we determined that
the first phase transition occurred on average at q 5 2
6 0.2, and thus qD 5 2.0 was generally appropriate for
the time series in our study.

The modified DTM technique (Veneziano and Fur-
colo 1999) with a fixed q 5 qD 5 2 was used to estimate
multifractal parameters a and C1. The moment expo-
nents, K(2, h) were estimated using linear regression on
trace moments computed for t 5 1–30 days (l 5 584–
17 520) and h from 0.5 to 2.5. Figure 5 shows the range
of multifractal parameter estimates obtained from the
analysis of the time period between 1950 and 1997.
Here, g s is within the range of observed gmax, but the
distribution of gmax is wider presumably due to hetero-
geneous sampling. Theoretically, c(g s) 5 1 1 Ds and
it should be c(g s) 5 1 in our case (Hubert et al. 1993).
The median value of c(g s) was 1.0, with a range of
0.9889–1.0066 in our analysis, essentially identical to
what was expected theoretically. The small amount of
variation about the median was attributed to sampling
variability. Additionally, we computed multifractal pa-
rameters for q ranging from 1.1 to 5 and found that
parameter estimates varied only slightly between the
original and the modified DTM as shown in Fig. 6. This
was not surprising since our estimates of a and C1 were
in the range of low or no bias in the graphs presented
by Veneziano and Furcolo (1999). Nevertheless, values
of g s obtained from the modified DTM, while exhibiting
a wider range (see Fig. 6), were much closer to the range
of computed values of gmax, indicating that the modified
DTM yielded more consistent parameter estimates for
our application. This analysis also showed us that chang-
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FIG. 2. Normalized maximum accumulations for three HCN daily (filled symbols) and monthly
(open symbols) time series showing temporal scaling breaks at 30 days (1 month) and 365 days
(1 yr). The three different shapes (diamond, square or circle) represent the three different time
series.

FIG. 3. Distribution of codimension values of interest computed
from daily [(1–30) day codimensions] and monthly [(1–12) month
codimensions] time series.

es in parameter estimates were negligible for values of
q between roughly 1.8 and 2.5, supporting our choice
of qD 5 2 for FMP parameter estimation.

Figure 7a shows contour maps of 3-day FMP esti-
mates using the multifractal parameters from Fig. 5. The
contours were developed from a bilinear interpolation
of the FMP values estimated at daily HCN stations.
Higher FMP values are associated with southern coastal
areas, which is consistent with the climatology of major
storm tracks in the region. The return periods for the
3-day FMP estimates range from 5300 to 6200 yr based
on Eq. (3). These estimates are one order of magnitude
lower than the return periods estimated by NRC (1994)
and Koutsoyiannis (1999) for the 1-day PMP. In this
work, we were not able to estimate the magnitude of

the 1-day FMP; in order to do so we would have needed
hourly precipitation data, the analysis of which was out-
side of the scope of this paper. DPMP estimates for a
specified return period of 1 million yr are shown in Fig.
7b.

For illustrative purposes, we compared multifractal
FMP and DPMP estimates (this study), and state-of-the-
practice estimates (HMRs 51 and 52) by the Federal
Energy Regulatory Commission for seven dam locations
in Pennsylvania (Table 1). The HMRs 51 and 52 esti-
mates were corrected with an orographic factor that ac-
counted for elevation and wind direction. The DPMP
map for Pennsylvania in Fig. 8, also showing dam lo-
cations, was enlarged from Fig. 7b. Ratios of multifrac-
tal FMP estimates to HMRs 51 and 52 estimates in Table
1 range from 0.50 to 1.04, with five of the seven ratios
between 0.50 and 0.66. The implications of this example
are twofold. First, the comparison suggests that, as ex-
pected, FMP estimates are lower than PMP estimates.
The rather large difference may be due to the relatively
short time series used in our analysis. Second, it stresses
the importance of incorporating spatial variability and
terrain in the analysis. On the other hand, the DPMP
estimates are consistently higher than the standard PMP
(DPMP/PMP ratios ranged from 0.96 to 2), suggesting
that they can be used as a bound of known risk in design
of critical infrastructure.

The multifractal method presented in this study shows
promise as an alternative method for estimating the mag-
nitude of a design event and its associated failure risk
for high-hazard structures. On a cautionary note, FMP
estimates are only as good as the observational record,
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FIG. 4. (a) Example empirical pdf analysis (following Olsson 1995)
for determining qD in our study. Note the complex tail behavior (two
linear slopes) that was evident only in time series with maxima greater
than 20 cm (8 in.) day21. (b) Example K(q) function for the same
time series as in (a). The point at which linearity occurred (q 5 2)
was more easily discerned when the function was plotted in log–log
space. Note the subtle break in slope that corresponds to the second
slope in (a).

FIG. 6. Comparison of multifractal parameters obtained by applying
the original DTM method (as presented in Tessier et al. 1993) and
the modified method presented by Veneziano and Furcolo (1999).

FIG. 5. Multifractal parameters estimated from daily HCN time
series for 1950–97.

FIG. 7. (a) The 3-day FMP depth contours (in cm) estimated using
parameter estimates shown in Fig. 5. (b) The 3-day DPMP depth con-
tours (in cm) estimated using parameter estimates shown in Fig. 5.
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TABLE 1. Comparison of FMP and DPMP estimated using methods
presented in this paper with PMP estimates using HMRs 51 and 52
(NWS 1980a; Hansen et al. 1982) with orographic correction. See
Fig. 8 for dam site locations.

Dam
site

HMRs 51
and 52 PMP

(cm)
FMP
(cm)

DPMP (cm)
for Pe 5 1

3 1026

Ratio of
FMP/PMP

Ratio of
DPMP/

PMP

7
4

11
25
20
16

2

72.03
77.22
65.02
65.02
68.07
68.07
68.07

36.58
38.85
67.53
59.98
44.75
44.75
43.12

70
74

130
115

86
86
83

0.51
0.50
1.04
0.92
0.66
0.66
0.63

0.97
0.96
2.00
1.77
1.26
1.26
1.22

FIG. 8. Dam site locations (triangles) overlaid on 3-day DPMP
contour map over PA (enlarged from Fig. 7b). Comparisons of PMP
estimated using HMRs 51 and 52 with FMP and DPMP (this paper)
are given in Table 1.

FIG. 9. (a) Mean values with 95% confidence intervals for (1–30)
day codimensions showing the influence of both climate variability
and terrain. (b) Mean values with 95% confidence intervals for (1–
12) month codimensions showing the influence of both climate var-
iability and terrain.

which requires long-term monitoring at high spatial res-
olution. It must also be recognized and accepted that
using the FMP as a design criterion would likely expose
the structure and those dependent on the safety of the
structure to a higher degree of failure risk than that
designed using the conventional PMP, or alternatively
the DPMP as defined here.

c. Effect of climate variability and terrain on FMP
parameters and estimates

To investigate whether there is an effect of interde-
cadal climatic variability on the values of multifractal
parameters, each time series was split into two subseries
(1950–70 and 1971–97). For the daily [(1–30) day] co-
dimensions, the mean decreased from 0.285 to 0.269,
but this change was not statistically significant. We
found that daily codimensions along the Atlantic and
Gulf coasts decreased over time, which coincided with
increased daily precipitation maxima in the later period.
For the monthly codimensions, the mean value increased
from 0.629 to 0.637 between the two time frames, a
change that is statistically significant at a 95% confi-
dence level. The combined effects of terrain and climate
were investigated by grouping the daily and monthly
codimensions from the two time frames (1950–70 and
1971–97) into four elevation categories as a function of
rain gauge elevation: 1) ,61 m (200 ft), 2) 61–244 m
(200–800 ft), 3) 244–427 m (800–1400 ft), and 4) .427
m (1400 ft). These elevation categories roughly coincide
with relevant physiographic regions: 1) relatively flat
coastal plains and broad river valleys, 2) gently sloping
plateau (analogous to first upslopes defined in section
1), 3) steeply sloping foothills (analogous to secondary
upslopes as defined in section 1), and 4) mountain ridg-
es. The average (1–30) day and (1–12) month codi-
mensions and the corresponding 95% confidence inter-
vals in the four terrain categories are shown in Figs. 9a
and 9b, respectively. In general, the differences in daily
codimension fields from one time period to another are
stronger then the spatial variations for the same period.
For example, (1–30) day codimension distributions have
similar ranges across the elevation categories, but all
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FIG. 10. Maximum 6-h precipitable water flux contours (in cm) for
1950–97. The four counties in WV that experienced severe flash
flooding in early May 2002 are highlighted. Elkhorn, WV, recorded
the highest (preliminary) daily precipitation accumulation on 2 May
2002, 13 cm (5.1 in.), most of which was reported to have fallen
within a 6-h period.

show a slight downward shift from the earlier to the
later time frame. In the lowest-elevation category (coast-
al plains and river valleys) the mean daily codimension
values for the two time periods are significantly different
at a 95% confidence level (Fig. 9a). This indicates that
daily rainfall has become more extreme in the coastal
areas. For the (1–12) month codimension, interdecadal
variability has not had a large influence on the mean
codimensions or their distribution, but terrain has.
Changes in monthly codimensions are indicative of
changes at the seasonal to annual scales (an increased
(1–12) month codimension signifies an upward trend in
annual total precipitation). Orographic enhancement of
annual total precipitation is evident in Fig. 9b in that
the average codimension values for the highest-eleva-
tion category (.427 m) are statistically higher than the
other categories. Although a rigorous spatial analysis
was not performed, this evaluation suggests that at long
timescales (i.e., monthly to yearly), spatial variations in
rainfall accumulations primarily are congruent with
orography and landform, while at short timescales (i.e.,
daily) the same variations reflect variations in weather
statistics likely associated with interdecadal climatic
variability. Nevertheless, note that scaling analysis im-
plicitly requires stationarity of the time series. By split-
ting the observational record into two periods, we ef-
fectively hypothesize that this is not the case. Further
research toward determining the record length necessary
to accommodate both stationarity and sampling require-
ments is needed.

d. Scaling behavior of precipitable water

By definition, the underlying assumption in estimat-
ing the PMP is that the maximum amount of atmo-
spheric moisture falls as precipitation. To illustrate the
relationship between heavy rainfall and atmospheric wa-
ter, we studied the scaling behavior of 6-hourly fields
of precipitable water fluxes from the NCEP–NCAR re-
analysis datasets. Contours of maximum 6-h precipi-
table water (PWAT) fluxes for 1950–97 are shown in
Fig. 10. The shallower column of atmosphere over
which the atmospheric moisture is integrated to compute
precipitable water is evident in the tongue of lower flux
values over the Appalachian Mountains. Also evident
are the higher PWAT fluxes over the Gulf of Mexico
and the tropical Atlantic, both areas that serve as sources
of atmospheric moisture. For comparison, we highlight
the location of severe flash flooding in West Virginia,
which occurred in response to very intense storm ac-
tivity on 2 May 2002. The highest (preliminary) re-
corded rainfall amount (13 cm or 5.1 in.) was in Elk-
horn, West Virginia; however, it was reported that more
than 4 in. of the rain fell within a 6-h period. This
accumulation corresponds to about half of the maximum
PWAT flux estimated in the vicinity. Preliminary data
from the three closest rain gauges surrounding Elkhorn
are significantly lower on the same day: Athens (HCN-

460355) recorded 6.91 cm (2.72 in.), Bluefield (HCN-
460925) recorded 6.99 cm (2.75 in.), and Princeton
(HCN-467207) recorded 7.11 cm (2.80 in.). This case
clearly illustrates the large space–time variability of
rainfall, which challenges the reliability of regionalized
estimates of hydrological extremes when the spatial res-
olution of the observing network cannot capture small-
scale, heavy storms such as thunderstorms, localized
orographic convection, etc.

To place the FMP estimates from the previous section
within the framework of total available atmospheric
moisture for the same time period, we repeated our anal-
ysis for the 6-h PWAT time series. Scaling breaks were
identified at 30 days, 6 months, and 12 months. A subtle
but important scaling break was also identified at 3 days.
Discrete Fourier transform (DFT) analysis showed that
the characteristic frequency in the PWAT time series
was 5 days, which is consistent with the interarrival
times of large storm systems. Because precipitable water
columns are moving (whereas the ground-based precip-
itation depth measurements were not), using a time in-
terval greater than 3–5 days to compute multifractal
PWAT parameters (a, C1, g s, etc.) would not be valid.
We found that only the codimensions obtained from the
[6 h 3 day21] duration yielded the required a , 1 (with
the exception of one outlier), which is the limit of va-
lidity for Eq. (7). With the exception of the (6–12) month
codimensions, all other codimensions were close to the
embedded scale dimension (D) of 1 (the embedding
dimension can be thought of as representing the ‘‘space
filling’’ properties of rainfall accumulations). Inspection
of their spatial codimension distributions (not shown)
illustrated that interdecadal climate variability effects
are pronounced in a manner consistent with our findings
with regard to the codimensions of observed precipi-
tation maxima.
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4. Conclusions

In this study we characterized the multifractal be-
havior of maximum accumulated daily and monthly pre-
cipitation time series and maximum accumulated 6-h
precipitable water fluxes for the period from 1950 to
1997. We chose this relatively short time frame because
it maximized the number of suitable time series within
our analysis domain. We evaluated a multifractal ap-
proach for estimating high-hazard engineering design
criteria. The multifractal method also provides a frame-
work to assign a risk of exceedence for the PMP. Return
periods for the 3-day FMP estimates in this study ranged
from 5300 to 6200 yr, an order of magnitude lower than
previous estimates for the standard PMP. We computed
FMP magnitudes for illustrative comparison with PMP
estimates from the conventional NWS approach (HMRs
51 and 52) that had been corrected for orographic ef-
fects. For selected dam sites in Pennsylvania, 3-day mul-
tifractal FMP estimates were typically 50%–70% of the
PMP 3-day estimates. The size of this underestimation
may be due in part to the relatively short time frame
used in this analysis. Nevertheless, note that occasion-
ally the FMP/PMP ratio is close to or exceeds unity.
This underscores the importance of site-specific, place-
based estimates of extreme events. By contrast, multi-
fractal estimates of extreme events with a return period
of 1 million yr generally exceed the standard HMRs 51
and 52 PMP values and, thus, can be viewed as an upper
bound of known risk to the PMP. For design purposes,
the entire time series should be used in order to obtain
the most conservative DPMP estimates. Further theo-
retical work is needed to investigate the introduction of
historical maxima into empirical multifractal analysis,
when the historical record is broken or incomplete.

We also investigated the effects of climate variability
and terrain and found that codimensions (timescaling
slopes) calculated over short durations [i.e., (1–30)
days] capture changes in weather associated with inter-
decadal climatic variability, while spatial patterns in
these codimensions are reflective of synoptic weather
patterns and moisture sources. Codimensions calculated
over longer durations [i.e., (1–12) months] are more
influenced by terrain and less by climate variability.
Since FMP estimates are calculated for relatively short
durations, typically ranging from 6 h to 3 days, we
conclude that FMP estimates are subject to the same
influences as the daily codimensions from which these
estimates are derived. We also found that the scaling
behavior of precipitable water fields from the NCEP–
NCAR reanalysis was similar to that of precipitation
from rain gauge observations in that the spatial patterns
of codimensions at short timescales were more reflective
of synoptic weather patterns, while spatial patterns for
seasonal to interannual timescales reflected regional
physiography, namely the dominant presence of the Ap-
palachian Mountains.

Although the multifractal method shows promise for

yielding physically meaningful design criteria, this work
suggests that any estimates based on rain gauge obser-
vations will always be constrained by the length of the
record and by the spatial resolution of the rain gauge
network. Further research should be conducted to in-
vestigate how robust the relationship is between the
scaling of model-simulated precipitable water fluxes and
observed rainfall. As the spatial and temporal resolution
of numerical weather prediction models improves, long-
term climate simulations may provide an avenue to gath-
er data for using in risk-based estimates of extreme rain-
fall.
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