
David Tenenbaum – EEOS 472 – UMass Boston

Map symbology and ArcCatalog

Chapter 15 – Setting layer symbology
– pp. 263-293
– Exercises 15A, 15B & 15C

Chapter 16 – Using ArcCatalog Objects in 
ArcMap
– pp. 295-314
– Exercises 16A & 16B



David Tenenbaum – EEOS 472 – UMass Boston

Chapter 15 – Setting layer symbology

• Setting layer color
• Setting layer symbols
• Creating a class breaks renderer



David Tenenbaum – EEOS 472 – UMass Boston

Chapter 15 – Setting layer symbology

• Let’s take a moment to think about the data files that are 
used when we make a map using ArcGIS:
– The spatial data itself is stored in a variety of possible formats

(shapefiles, coverages, in geodatabases, etc.), but these just 
contain information about location and attributes

– The project file stores information about what spatial data to 
include in the map and how to symbolize it

• You can think of a project file like a recipe, and the 
spatial data files it references as ingredients it uses
– There is nothing specific about how to symbolize the data 

stored in the spatial data files
– There is no spatial data stored in the project file itself



David Tenenbaum – EEOS 472 – UMass Boston

Chapter 15 – Setting layer symbology

• This is a very efficient setup:
– When we make a map, we don’t change the underlying spatial 

data files
– This means they can act as ‘ingredients’ for lots of maps

• The symbolization decisions sit within the project 
document

• As we know from our experience in this course up to this 
point, we can extensively customize the functionality in 
projects by changing the GUI elements and coding VBA

• Thus, we can use code to set the symbology of layers in 
our maps, which in many cases allows us to do things 
that would be difficult for the user to do manually (?) 



David Tenenbaum – EEOS 472 – UMass Boston

Chapter 15 – Setting layer symbology

• When we point ArcGIS towards a spatial data file to add 
to a map, it gets added as a layer

• Through the GUI, we use legends to specify the 
symbology that controls how that layer is shown

• Using VBA code, we use objects from the renderer class 
to control the symbology (when a user does this in the 
GUI, they are really manipulating an underlying renderer) 



David Tenenbaum – EEOS 472 – UMass Boston

Chapter 15 – Setting layer symbology
Interface inheritance

• Recall back in Chapter 10 when we learned of class 
inheritance:  Derived classes can take over (or inherit) 
properties, methods, and interfaces of the pre-existing 
classes, which are referred to as base classes

• In this chapter, we look at a form of inheritance that is a 
subset of the above, called interface inheritance:
– The properties and methods associated with a particular

interface are inherited, but properties and methods from other 
interfaces on the same class ARE NOT inherited here

ISimpleLineSymbol
SimpleLineSymbol
ISimpleLineSymbol : ILineSymbol

Style: esriSimpleLineStyle

Name of the 
inherited 
interface



David Tenenbaum – EEOS 472 – UMass Boston

Setting layer color

• By default, when a layer is added to a map using the GUI, 
it is a symbolized with a single random color

• This is the default renderer assigned to the layer
• As an alternative, we can write code to make use of 

another renderer

FeatureLayer

Symbol

Color

*

Renderer
– Every feature layer has a 

renderer
– Renderers are composed of 

symbols
– Every symbol has a color

(different kinds of symbols will 
have other sorts of characteristics 
as well)



David Tenenbaum – EEOS 472 – UMass Boston

Setting layer color

• The Symbol abstract class has many subclasses; the 
basic ones are:
– The MarkerSymbol class for points
– The LineSymbol class for lines
– The FillSymbol class for polygons

• These, in turn, are abstract classes that each have their 
own subclasses (see page 266 of the text)

Symbol

MarkerSymbol LineSymbol FillSymbol



David Tenenbaum – EEOS 472 – UMass Boston

Setting layer color

• The usual approach applies here:  Symbols and their 
Colors are declared with the Dim keyword, created with 
the New keyword, and properties are set with the 
object.property syntax

• Every FeatureLayer has one FeatureRenderer; 
FeatureRenderer is an abstract class with eight subclasses
for the various legend types:
– UniqueValueRenderer
– DotDensityRenderer
– SimpleRenderer
– ClassBreaksRenderer

– ScaleDependentRenderer
– ChartRenderer
– BitUniqueValueRenderer
– ProportionalSymbolRenderer



David Tenenbaum – EEOS 472 – UMass Boston

Setting layer symbols

• In addition to specifying the characteristics of symbols 
yourself, you can also draw upon pre-existing sets of 
symbols

• ArcGIS symbols are stored in the Style Manager, 
grouped by style gallery classes that contain individual 
style gallery items

• These are designed to be used for common thematic 
maps of various types

• This is as simple as finding the styles you wish to use in 
the Manager, and then navigating the associated objects 
and classes (known as Enums, from enumerations) to 
obtain those symbols for your use



David Tenenbaum – EEOS 472 – UMass Boston

Creating a class breaks renderer

• A particularly useful application of manipulating legends 
/ renderers by code is to create them with particular 
ranges of associated attribute values

• This kind of renderer is a ClassBreaksRenderer, and by 
working with these through VBA, you can specify the 
exact ranges of attribute values associated with 
particular symbols

• You might use this approach if you are making many 
similar maps, and want to ensure they all have 
precisely the same legend (and ranges of values 
associated with particular symbols)



David Tenenbaum – EEOS 472 – UMass Boston

Chapter 16 – Using ArcCatalog 
objects in ArcMap

• Adding layer files to ArcMap
• Making your own Add Data dialog 

box



David Tenenbaum – EEOS 472 – UMass Boston

Chapter 16 – Using ArcCatalog 
objects in ArcMap

• You are familiar enough with ArcGIS to know that its 
functionality is broken up into different applications:
– Map-making happens in ArcMap
– Management of data files happens in ArcCatalog

• Even if you’re going to develop VBA code primarily for 
ArcMap, you’ll need to work with some ArcCatalog 
classes and objects to manage data files (that you might 
to a map, for example)

• To be totally accurate, all ArcObjects are available in all 
ArcGIS applications, although some are associated with 
the object model diagrams of particular applications



David Tenenbaum – EEOS 472 – UMass Boston

Chapter 16 – Using ArcCatalog 
objects in ArcMap

• The ArcCatalog object model has similar starting points
to that of ArcMap
– There is an ArcCatalog Application object named Application
– There is a GxDocument object named ThisDocument

• One key difference is the location where customizations 
can be stored
– Unlike ArcMap with its options (the project .mxds, base 

templates and the normal.mxt template), ArcCatalog has only 
one place where customizations are stored, its own 
normal.gxt template (this presents some problems in 
conveniently distributing ArcCatalog customizations)

• Just as many objects in ArcMap have the Mx prefix in 
their name, Gx is the common prefix for ArcCatalog



David Tenenbaum – EEOS 472 – UMass Boston

MxDocument
CoClass

Application
class

Map
CoClass

IMap
IActiveView

*

Layer
Abstract

*

FeatureLayer
CoClass

RasterLayer
CoClass

GraphicsLayer
CoClass …

ThisDocument

Normal template (normal.mxt)
Base template
Map document

Chapter 16 – Using ArcCatalog 
objects in ArcMap

ArcMap Object
Model Diagram



David Tenenbaum – EEOS 472 – UMass Boston

Application
Class

GxCatalog
CoClass

GxObject
Abstract*

GxLayer
CoClass

GxMap
CoClass

GxTextfile
CoClass

GxPrjFile
CoClass

Normal template (normal.gxt)

GxFile
Class

Chapter 16 – Using ArcCatalog 
objects in ArcMap

ThisDocument

ArcCatalog Object
Model Diagram

GxDocument
Class



David Tenenbaum – EEOS 472 – UMass Boston

Application
Class

GxCatalog
CoClass

GxObject
Abstract*

GxFile
Class

Chapter 16 – Using ArcCatalog 
objects in ArcMap

• The ArcCatalog Application 
is composed of GxCatalog 
objects, which in turn are 
composed of GxObjects

• A GxObject is any file, 
folder, disk connection, or 
other object you can click 
on in the tree view shown in 
the left-hand pane of 
ArcCatalog 

Several kinds of GxObjects, 
shown in the tree view

GxDocument
Class



David Tenenbaum – EEOS 472 – UMass Boston

GxDialog
CoClass

ProjectedCoordinates
SystemDialog

CoClass

GeogaphicCoordinates
SystemDialog

CoClass

TableDefinitionDialog
CoClass

SpatialReference
Dialog

CoClass

Chapter 16 – Using ArcCatalog 
objects in ArcMap

• There are five further coclasses in the ArcCatalog object 
model diagram that represent dialog boxes

• Each has its uses, but particularly important to us is the 
GxDialog, which gives us the capability to make 
customized dialog boxes for specifying files to be 
opened or saved



David Tenenbaum – EEOS 472 – UMass Boston

Adding layer files to ArcMap

• A layer file (extension .lyr) acts as an intermediate 
between a spatial data source and the Map document:  It 
stores information about symbology, the path to the 
data set etc.
– This simplifies adding a layer to a Map with a particular 

symbolization; it is all set up already
GxObject

Abstract

GxLayer
CoClass

GxFile
CoClass

IGxFile

IGxLayer

Path

Layer

• A GxLayer is a GxFile, and 
both are GxObjects, and as 
they are coclasses, either can 
be created directly

• To create one from a file, 
use GxFile’s path property:



David Tenenbaum – EEOS 472 – UMass Boston

Adding layer files to ArcMap

• Set up the GxLayer object by declaring and creating it:
Dim pGxLayer As IGxLayer
Set pGxLayer = New GxLayer

• Now get the IGxFile interface to use the path property:
Dim pGxFile as IGxFile

Set pGxFile = pGxLayer
GxObject

Abstract

GxLayer
CoClass

GxFile
CoClass

IGxFile

IGxLayer

Path

Layer

• Now, with a known path to 
our layer file, set the path 
property:
pGxFile.Path = “C:\the.lyr”

• The layer is now ready to 
use with our pMxDoc



David Tenenbaum – EEOS 472 – UMass Boston

Making your own Add Data dialog box

• In many cases, rather than having a known path to the data 
we want to add, instead we give the user the chance to 
navigate to the correct directory and select the data 
source using a dialog box

• The GxDialog is designed just 
for this purpose:  It allows to 
create a file selection dialog 
box that we can customize in 
various ways (e.g. to allow 
specific file types to be selected, 
single or multiple files selected, 
what the title and buttons say, 
what directory it opens in etc.)



David Tenenbaum – EEOS 472 – UMass Boston

Making your own Add Data dialog box

• For example, to create a GxDialog titled “Add Data”, that 
starts in “Catalog”, with a Button that says “Add”, and 
only allows the selection of a single file:
Dim pGxDialog As IGxDialog
Set pGxDialog = New GxDialog
pGxDialog.ButtonCaption = “Add”
pGxDialog.StartingLocation = _
“Catalog”
pGxDialog.Title = “Add Data”

• We can further customize the 
GxDialog by restricting the 
type of files it can be used to 
open using an ObjectFilter



David Tenenbaum – EEOS 472 – UMass Boston

Making your own Add Data dialog box

• There are a wide variety of types
of GxObjectFilter to suit whatever 
you need your GxDialog to get

• For example to allow our GxDialog 
to just open layers:
Dim pLFilter as IGxFilterLayers
Set pLFilter = New GxFilterLayers

• We then set our GxDialog’s
ObjectFilter property
accordingly:
Set pGxDialog.ObjectFilter = _
pLFilter



David Tenenbaum – EEOS 472 – UMass Boston

Making your own Add Data dialog box

• We need to create one more object to use our GxDialog
– An EnumGxObject gives access to the members that are 

enumerated through the ArcCatalog tree view
– Essentially, this gives us a way to get the files that the user 

chooses through the dialog
Dim pLayerFiles As IEnumGxObject

• We can now open the GxDialog:
pGxDialog.DoModalOpen 0, pLayerFiles

• We can now 
retrieve the files
from the Enum 
object by using its 
Next method



David Tenenbaum – EEOS 472 – UMass Boston

Making your own Add Data dialog box

• The result of the Next method will be a GxObject, so we 
need to declare it as such, and then we can set its value by 
getting the value from the EnumGxObject using the 
Next method:
Dim pLayerFile As IGxObject
Set pLayerFile = pLayerFiles.Next

• Since we used AllowMultiSelect = False, we know our 
EnumGxObject is going to contain just a single value

• Otherwise, we could 
loop, and apply the 
Next method 
repeatedly to get 
multiple values



David Tenenbaum – EEOS 472 – UMass Boston

Next Topic:

Displaying and selecting features


