
David Tenenbaum – EEOS 472 – UMass Boston

The object model, UML diagrams,
and making tools

Chapter 11 – Navigating object model
diagrams
– pp. 171-197
– Exercises 11A & 11B

Chapter 12 – Making tools
– pp. 199-225
– Exercises 12A, 12B & 12C

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 11 – Navigating object
model diagrams

• Getting layers
• Creating and assigning colors

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 11 – Navigating object
model diagrams

• In our previous lecture, we introduced Unified Modeling
Language (UML) diagrams for classes:

Parcel
Value: Currency

Zoning: String

Calculate Tax (): Currency

Class Name

Properties

Methods
Data Types

• While these diagrams are useful to us just to see the
characteristics of a class, their real power comes in
showing us the relationships between classes in the
ArcGIS object model

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 11 – Navigating object
model diagrams

• The following slides appeared in a slideshow entitled
Getting Started with ArcObjects, presented at the 2009
ESRI User Conference held on July 13 – 17, 2009 in San
Diego, CA in Technical Workshops lead by Toni Fisher,
Ken Smith and Patrisha Wells:

http://proceedings.esri.com/dvd/uc/2009/uc/tws/workshops/tw_195.pdf

• I’ve included their Diagrams section here because it does
an excellent job of illustrating how the ArcGIS object
model diagrams make use of UML

• I little Googling leads me to believe that a lot of this
material was originally developed by Robert Burke (the
author of our textbook)

UC2009 Tech WorkshopsUC2009 Tech Workshops

Lecture PathLecture Path

UC2009 Tech WorkshopsUC2009 Tech Workshops 55

GIS
parts

Interfaces
& COMWhat are

ArcObjects
Diagrams

Extend
the

GeodatabaseQuestions

Wrap-up

Implement
ESRI

Interfaces

Extend
the

Applications

Engine

Server

UC2009 Tech WorkshopsUC2009 Tech Workshops

Object Model DiagramsObject Model Diagrams

•• Road maps to the Road maps to the ArcObjectsArcObjects classesclasses
•• Help you write codeHelp you write code
•• Based on UML Based on UML –– Unified Modeling Language Unified Modeling Language

–– Symbols show relationships, connections, properties, and methodsSymbols show relationships, connections, properties, and methods
•• > 70 libraries> 70 libraries
•• > 110 posters> 110 posters

UC2009 Tech WorkshopsUC2009 Tech Workshops 66

UC2009 Tech WorkshopsUC2009 Tech Workshops

Where do you get the diagrams?Where do you get the diagrams?

•• Install the Install the ArcObjectsArcObjects developer kitdeveloper kit
–– C:C:\\Program FilesProgram Files\\ArcGISArcGIS\\DeveloperKitDeveloperKit\\DiagramsDiagrams*PDF*PDF

•• HelpHelp
–– Per libraryPer library

•• OnlineOnline
–– ESRI Resources siteESRI Resources site

•• Per libraryPer library

UC2009 Tech WorkshopsUC2009 Tech Workshops 77

UC2009 Tech WorkshopsUC2009 Tech Workshops

Navigating the help: Navigating the help: CartoCarto library, diagram, and classeslibrary, diagram, and classes

UC2009 Tech WorkshopsUC2009 Tech Workshops 88

UC2009 Tech WorkshopsUC2009 Tech Workshops

CartoCarto’’ss Map class with lots of symbolsMap class with lots of symbols
The symbols help you write codeThe symbols help you write code

UC2009 Tech WorkshopsUC2009 Tech Workshops 99

UC2009 Tech WorkshopsUC2009 Tech Workshops

The twelve UML SymbolsThe twelve UML Symbols

•• RelationshipsRelationships

•• ClassesClasses

•• Properties and methodsProperties and methods

UC2009 Tech WorkshopsUC2009 Tech Workshops 1010

*

Abstract CoClass Class

UC2009 Tech WorkshopsUC2009 Tech Workshops

UML symbolsUML symbols

•• AssociationAssociation

UC2009 Tech WorkshopsUC2009 Tech Workshops 1111

NestChicken

UC2009 Tech WorkshopsUC2009 Tech Workshops

UML symbolsUML symbols

•• MultiplicityMultiplicity
•• AssociationAssociation

UC2009 Tech WorkshopsUC2009 Tech Workshops 1212

NestChicken

Farm

*

*

UC2009 Tech WorkshopsUC2009 Tech Workshops

UML symbolsUML symbols

•• MultiplicityMultiplicity
•• AssociationAssociation

UC2009 Tech WorkshopsUC2009 Tech Workshops 1313

NestChicken

Farm

*

Wings
2

*

UC2009 Tech WorkshopsUC2009 Tech Workshops

UML symbolsUML symbols

•• Creates aCreates a
•• MultiplicityMultiplicity
•• AssociationAssociation

UC2009 Tech WorkshopsUC2009 Tech Workshops 1414

Egg NestChicken

Farm

*

Wings
2

*

UC2009 Tech WorkshopsUC2009 Tech Workshops

UML symbolsUML symbols

•• Is composed ofIs composed of
•• Creates aCreates a
•• MultiplicityMultiplicity
•• AssociationAssociation

UC2009 Tech WorkshopsUC2009 Tech Workshops 1515

Egg

Wings

NestChicken

Farm

*

2

*

UC2009 Tech WorkshopsUC2009 Tech Workshops

UML symbolsUML symbols

•• Is a type ofIs a type of
•• Is composed ofIs composed of
•• Creates aCreates a
•• MultiplicityMultiplicity
•• AssociationAssociation

UC2009 Tech WorkshopsUC2009 Tech Workshops 1616

Egg

Bird

Wings

NestChicken

Farm

*

2

*

UC2009 Tech WorkshopsUC2009 Tech Workshops

UML class symbols: Abstract classUML class symbols: Abstract class

•• 2D and not shaded2D and not shaded
•• Objects can not be created from itObjects can not be created from it

UC2009 Tech WorkshopsUC2009 Tech Workshops 1717

Bird
Abstract

UC2009 Tech WorkshopsUC2009 Tech Workshops

UML class symbols: Abstract classUML class symbols: Abstract class

•• 2D and not shaded2D and not shaded
•• Objects can not be created from it Objects can not be created from it
•• Holds properties and methods that subclasses inheritHolds properties and methods that subclasses inherit

UC2009 Tech WorkshopsUC2009 Tech Workshops 1818

Bird
Abstract

Chicken

UC2009 Tech WorkshopsUC2009 Tech Workshops

UML class symbols: UML class symbols: CoClassCoClass

•• 3D and shaded3D and shaded
•• You create objects out of themYou create objects out of them

–– Declare a variableDeclare a variable
–– Instantiate an object using the New keywordInstantiate an object using the New keyword

UC2009 Tech WorkshopsUC2009 Tech Workshops 1919

Bird

Nest

Abstract

CoClass
Chicken

CoClass

Farm
CoClass

*

UC2009 Tech WorkshopsUC2009 Tech Workshops

UML class symbols: ClassUML class symbols: Class

•• Other classes create or return these objectsOther classes create or return these objects
•• You write code with another object to create or getYou write code with another object to create or get

–– You canYou can’’t create an egg without a chickent create an egg without a chicken
–– You canYou can’’t get a wing without an chickent get a wing without an chicken

UC2009 Tech WorkshopsUC2009 Tech Workshops 2020

Egg

Bird

Wings

NestChicken

Farm

*

2

Abstract

CoClassCoClass

CoClass

UC2009 Tech WorkshopsUC2009 Tech Workshops

UML property symbolsUML property symbols

•• Read and write propertyRead and write property
–– These are attributes stored about the objectThese are attributes stored about the object
–– You can either get or set these propertiesYou can either get or set these properties

UC2009 Tech WorkshopsUC2009 Tech Workshops 2121

Chicken
Age
Color
Name

UC2009 Tech WorkshopsUC2009 Tech Workshops

UML property symbolsUML property symbols

•• Read only propertyRead only property
–– Left half barbell symbolLeft half barbell symbol
–– You can get this propertyYou can get this property’’s values value
–– But you canBut you can’’t change itt change it

UC2009 Tech WorkshopsUC2009 Tech Workshops 2222

Chicken
Age
Color
Name
Wing(side)

UC2009 Tech WorkshopsUC2009 Tech Workshops

UML property symbolsUML property symbols

•• Write only propertyWrite only property
–– Right half barbell symbolRight half barbell symbol
–– Usually an edit property or like a passwordUsually an edit property or like a password
–– You can change the value, but you canYou can change the value, but you can’’t get itt get it

UC2009 Tech WorkshopsUC2009 Tech Workshops 2323

Chicken
Age
Color
Name
Wing(side)
Password

UC2009 Tech WorkshopsUC2009 Tech Workshops

Property valuesProperty values

•• Each property holds a valueEach property holds a value
•• The values are of a certain type: Number, string, date, Boolean,The values are of a certain type: Number, string, date, Boolean, object object

……
•• The type appears to the right of the property nameThe type appears to the right of the property name

–– Property name, a colon, and typeProperty name, a colon, and type
–– Name: StringName: String -- means that the Name property holds a text stringmeans that the Name property holds a text string
–– The Wing property holds Wing objectsThe Wing property holds Wing objects

UC2009 Tech WorkshopsUC2009 Tech Workshops 2424

Chicken
Age: Integer
Color: String
Name: String
Wing(side): Wing
Password: String

UC2009 Tech WorkshopsUC2009 Tech Workshops

UML method symbolUML method symbol

•• MethodMethod
–– Arrow symbolArrow symbol
–– Methods are actions the object can performMethods are actions the object can perform
–– Sometimes called behaviorsSometimes called behaviors

UC2009 Tech WorkshopsUC2009 Tech Workshops 2525

Chicken

LayEgg
Fly

UC2009 Tech WorkshopsUC2009 Tech Workshops

Methods return valuesMethods return values

•• You write code to run a methodYou write code to run a method
•• Some methods return a value, some donSome methods return a value, some don’’tt
•• The valueThe value’’s type appears to the right of the methods type appears to the right of the method

–– Method, colon, and type of its return valueMethod, colon, and type of its return value
–– LayEggLayEgg: Egg: Egg -- the the LayEggLayEgg method returns an egg objectmethod returns an egg object
–– The Fly method returns nothingThe Fly method returns nothing

UC2009 Tech WorkshopsUC2009 Tech Workshops 2626

Chicken

LayEgg: Egg
Fly

UC2009 Tech WorkshopsUC2009 Tech Workshops

Reading diagramsReading diagrams

•• Classes are rectanglesClasses are rectangles
•• Classes have properties and methodsClasses have properties and methods
•• Get neighboring or connected objectsGet neighboring or connected objects

pLayerpLayer = pMap.Layer(0)= pMap.Layer(0)

UC2009 Tech WorkshopsUC2009 Tech Workshops 2727

Map (data frame)
Layer (index): ILayer

AddLayer (ILayer)

Layer

*
Feature
Class

0

1

2

3

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 11 – Navigating object model diagrams:
Reading object model diagrams

David Tenenbaum – EEOS 472 – UMass Boston

• Abstract classes are
symbolized by a 2-D
gray box

• They are neither
instantiable (using the
New keyword) nor are
they creatable (by using
requests to other classes)

• They define general
interfaces for subclasses

Chapter 11 – Navigating object model diagrams:
Abstract classes

David Tenenbaum – EEOS 472 – UMass Boston

• CoClasses are symbolized
by a 3-D gray box

• They are instantiable,
using the New keyword,
e.g.:

Dim pMap as IMap
Set pMap = New Map

• They are creatable, e.g.:
Dim pMap as IMap
Set pMap =

pMxDocument.FocusMap

Chapter 11 – Navigating object model diagrams:
CoClasses

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 11 – Navigating object model diagrams:
Classes

• Classes are symbolized by
a 3-D white box

• They are not instantiable
(you cannot make one
using the New keyword)

• They are creatable, you
must obtain instances
from other objects, e.g.:
Dim pNewRow as IRow
Set pNewRow =

pTable.CreateRow

David Tenenbaum – EEOS 472 – UMass Boston

Bird
Abstract

Chicken
CoClass

Nest
Class

*

Wings
Class

2

Farm
CoClass

Egg
Class

• Is a type of
• Is composed of
• Creates a(n)
• Multiplicity
• Association

Chapter 11 – Navigating object model diagrams:
Relationships between classes

David Tenenbaum – EEOS 472 – UMass Boston

Getting layers

• Chapter 11 provides two exercises to help you get
familiar with using the ArcGIS object model diagrams,
navigating from object to object to get from the ones you
have to the ones you need

• The first exercise is about getting layers, a common task
if you are working with map documents

• Recall from Chapter 10 that we can always count on
having the Application object and an MxDocument
object to start with when you work in ArcMap

• In the exercise, you’ll start with the MxDocument and
navigate from that to the layers, finding the path in the
object model diagram, and writing code based on it

David Tenenbaum – EEOS 472 – UMass Boston

Creating and assigning colors

• The second Chapter 11 exercise gives you some practice
in changing the symbolization of a map by modifying the
colors of map elements in a layout

• Once again, you will start with objects that you have
from the outset, and use object model diagrams to find a
way to get the objects that you want, so you can change
their properties and use their methods

• While these exercises will give you exposure to some
commonly useful objects, the key here is the skill you are
developing; the ability to use an object model diagram
to find the relationships you need so you can use them
in your code to do what you need to do!

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 12 – Making tools

• Reporting coordinates
• Drawing graphics
• Using TypeOf statments

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 12 – Making tools

• On multiple occasions earlier in the course, it has been
mentioned that tools in ArcGIS are different from
buttons

• This is obvious even from the user’s point of view:
Clicking on a button causes ArcGIS to do something
immediately, whereas clicking on a tool changes the
appearance of the cursor … and then the user then use
the mouse to control the cursor to use the tool to do
something

• As a budding ArcGIS programmer, you probably can
guess that developing the code for a tool is going to be
more complicated than it is for a button

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 12 – Making tools

• The key procedure for a button is the code associated
with its click event

• But for a tool, which the user can interact with in a
number of ways, there are many more events to code

• And beyond the number of events, developing a tool
requires you to have a broader understanding of a
variety of objects (maps, layers, geometry like points that
specify the position of the cursor)
– Hopefully you are becoming familiar with these many objects

and even if you are not …
– Hopefully you now know how to use the UML object model

diagrams to find out the things you need to know

David Tenenbaum – EEOS 472 – UMass Boston

Reporting coordinates

• Tools have a MouseMove event procedure that runs
whenever the user moves the cursor with the tool selected

• This procedure takes four arguments, that the user
specifies by using the mouse:
– button As Long
– shift as Long
– x As Long
– y As Long

• Each of these integers is a value that represents some
part of the mouse state: Button and shift reflect whether
the button or shift key is depressed, x and y report the
position in pixels of the mouse pointer

David Tenenbaum – EEOS 472 – UMass Boston

Reporting coordinates

• With the button and shift variables, If Then statements
can be used to create appropriate code for the various
permutations

• Further events like MouseDown and MouseUp respond
to pressing or releasing the mouse button

• Note that the x, y reported here are pixel positions in the
map display which (of course) are not in geographic
coordinates … but fortunately, we can navigate through
the object model to find the appropriate objects,
interfaces and properties to get the position of the map
pointer in geographic coordinates

David Tenenbaum – EEOS 472 – UMass Boston

Reporting coordinates

• The MxDocument
class has a property
CurrentLocation on
its IMxDocument
interface

• That property will
provide the position
of the mouse pointer
in geographic
coordinates using
the IPoint interface

David Tenenbaum – EEOS 472 – UMass Boston

Reporting coordinates

• We can search the developer
help and find that the IPoint
interface is available on the
Point coclass, and can thus
obtain the geographic location
of the mouse pointer with:
Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument
Dim pPoint As IPoint
Set pPoint = pMxDoc.CurrentLocation

David Tenenbaum – EEOS 472 – UMass Boston

Reporting coordinates
• If we want to report the coordinates to the user, we can

use the status bar at the bottom of the ArcMap window:

David Tenenbaum – EEOS 472 – UMass Boston

Drawing graphics

• If you have produced a few maps in ArcGIS, you
probably know that in a map it is often useful to
supplement the geographic data derived from layers with a
few graphics

• In the second exercise for Chapter 12, you will write some
code to place graphics on a map where the user clicks

• It will be useful to us to know a little about the classes
associated with graphics so you can understand how to
go about developing this capability in ArcGIS VBA code
– You will notice an emerging theme here: Navigating the object

model to find what we need is the key to being able to build
what we want to build

David Tenenbaum – EEOS 472 – UMass Boston

Drawing graphics

• Graphics belong to an abstract
class called Element

• Element, has two abstract
subclasses (FrameElement &
GraphicElement)

• We are interested in
GraphicElement, which in
turn has coclasses under it
named MarkerElement,
LineElement,
PolygonElement, and
TextElement

David Tenenbaum – EEOS 472 – UMass Boston

Drawing graphics

• Note that the abstract element
class has a Geometry property

• This means that geometry
objects (like points, lines, and
polygons) are associated with
elements (MarkerElements,
LineElements, and
PolygonElements respectively)

• We thus can create appropriate
geometry objects (like points)
and use them to position
marker elements on a map

David Tenenbaum – EEOS 472 – UMass Boston

Drawing graphics

• Adding a graphic to a
Map is done through
the Map’s
IGraphicsContainer
interface

• Once added,
refreshing the Map
causes it to redraw
itself, including the
graphics associated
with it (see the text
for details)

David Tenenbaum – EEOS 472 – UMass Boston

A Shortcut for QueryInterface

• Up until this point, when we have wanted to switch
interfaces (also known as the QueryInterface operation),
we have had two use two extra lines of code, e.g.:
Dim pMap as IMap
Set pMap = pMxDoc.FocusMap
Dim pGraphics As IGraphicsContainer

Set pGraphics = pMap

Here we have an MxDocument, and we
get the IMap interface from FocusMap

QueryInterface to switch from
IMap to IGraphicsContainer

• It is possible to do this in two lines instead, by declaring
the interface we need from the outset, and allowing VBA
to make the interface switch for us:
Dim pGraphics As IGraphicsContainer

Set pGraphics = pMxDoc.FocusMap

David Tenenbaum – EEOS 472 – UMass Boston

Using TypeOf statements
• Once you have developed your tool for drawing graphics

at rescue sites in the Map View in Exercise 12B, we have
a problem:
– This tool would not work properly in the Layout View, which

does not operate in geographic units

• We need a way to distinguish between Map and Layout
Views to turn the tool on and off appropriately, and we
explore this in Exercise 12C, using TypeOf statements

• In this example, and in a diverse set of other situations
where having an object of the wrong type would break
our code (and return a type mismatch error), we can use
TypeOf (which returns TRUE or FALSE) to check if an
object is the required type

David Tenenbaum – EEOS 472 – UMass Boston

Next Topic:

Using existing commands
and adding layers

