
David Tenenbaum – EEOS 472 – UMass Boston

Making objects and using interfaces

Chapter 9 – Making your own objects
– pp. 133-145
– Exercises 9A & 9B

Chapter 10 – Programming with interfaces
– pp. 147-170
– Exercises 10A & 10B

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 9 – Making your own objects

• Creating classes
• Creating objects

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 9 – Making your own objects

Recall some of our important OOP terminology:
• Class - A pattern or blueprint for creating an object. It

contains all the properties and methods that describe the
object

• Instance - The object you create from a class is called an
instance of a class

• Distinguishing an object/instance vs. a class, examples:
– Cookie vs. a cookie-cutter
– Car vs. the blueprint for manufacturing the car

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 9 – Making your own objects

• So far, we have used ArcGIS VBA to work with classes
(and instantiate objects of those classes) designed by
someone else

• Part of the power that developing for ArcGIS in VBA is
the ability to create your own classes, and thus create
instances of objects with the characteristics you need

• Think back to your introductory GIS classes: We use GIS
to create models of reality:
– With spatial representations and attributes (which can be

object properties in this context), we can build these models
– By creating objects with particular methods, we can represent

how things in our reality interact with one another in a model

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 9 – Making your own objects

Recall some of our important OOP terminology:
• Object - Anything that can be ‘seen’ or ‘touched’ in the

software programming environment . Objects have
attributes (properties) and behaviors (methods)

• Properties - Attributes are characteristics that describe
objects
– e.g. Text.Font = Arial

• Methods (behaviors) - An object’s methods are operations
that either the object can perform or that can be
performed upon the object,
– e.g. Table.AddRecord

David Tenenbaum – EEOS 472 – UMass Boston

Creating classes

• Think of a class as a container full of properties and
methods; that container has to be stored somewhere

• A class that you create gets stored in a particular kind of
code module called a class module; once again, we have
a decision to make about where that class module will be
stored (like any customization we develop):
– We could save it in a map document, or normal.mxt, or in a

base template

• We create properties for our new class in its module by
declaring them as variables (outside of any procedure)

• We create methods by writing a subroutine or function
in the class module

David Tenenbaum – EEOS 472 – UMass Boston

Creating classes - properties

• We create properties for our new class in its module by
declaring them as variables (outside of any procedure):

Public Value As Currency
Public Zoning As String

• Unlike all the code we have written so far, these are not
inside any particular procedure, and we need to use the
Public keyword (instead of the Dim keyword) to make
them available to any procedure that is present in our
class’ module

• An alternative method for creating properties uses what is
known as property procedures, but this is beyond the
scope of what we will be doing

David Tenenbaum – EEOS 472 – UMass Boston

Creating classes - methods

• We create methods by writing a subroutine or function
in the class module
– Recall that functions return a value, so we would choose a

function over a subroutine if we need to do so

• We name the subroutine or function according to the
name we want to use to call it in code later, and again use
the Public keyword to ensure that it is available to any
procedure in the class module, for example:
Public Function CalculateTax() As Currency

End Function

makes a .CalculateTax method that returns a value of the
type Currency

David Tenenbaum – EEOS 472 – UMass Boston

Creating classes – UML diagrams

• Just as it was useful to diagram our Form before we
created it, diagrams are a useful way to plan out the
characteristics of a class (and its relationships with other
classes)

• We can make use of a standard approach, called the
Unified Modeling Language (UML), and create object
model (or class) diagrams using its symbols, for example:

Parcel
Value: Currency

Zoning: String

Calculate Tax (): Currency

Class Name

Properties

Methods
Data Types

David Tenenbaum – EEOS 472 – UMass Boston

Creating objects

• Creating (or instantiating) objects is straightforward,
once we have a class defined to describe them; there are a
couple of ways we can do this:
– We can (and have) created objects with the user interface, like

our Form in Chapter 3
– We can also create them using code, in the same fashion that we

have been working with variables (declare them then set them)

• The basic data types we have worked with in the past
(and used Dim to declare) are called intrinsic variables

• We can work with objects in nearly the same way; we
refer to these as object variables, and still use the Dim
keyword to declare them

David Tenenbaum – EEOS 472 – UMass Boston

Creating objects

• With an intrinsic variable (like an integer), we can
declare and set the variable using:
Dim X As Integer
X = 365

• For an object variable, the declaration line looks the
same, but there is a small difference in the setting line:
Dim E As Elephant
Set E = New Elephant

• The line used to set an object variable has to begin with
the Set keyword, and must have the New keyword after
the equals sign to denote the setting of a new object

• Getting/setting properties and using methods is the same

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 10 – Programming with interfaces

• Using IApplication and IDocument
• Using multiple interfaces

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 10 – Programming with interfaces

• For some classes, it is useful to group their properties and
methods into smaller subgroups, based on their level of
generality, or similarity, or their origin (more to come)

• Interfaces are logical groupings of properties and
methods that are based on the criteria described above
– E.g., the Elephant class from the text might have two interfaces:

Elephant
TuskLength: Integer

Trumpet

Age: Integer

Name: String

Sleep

IElephant

IAnimal

Barbells indicate
whether you can get
and set properties

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 10 – Programming with interfaces

• To fully understand why interfaces exist at all (beyond
the organizational reasons), you have to know a little more
about the software architecture that underlies ArcGIS

• Interfaces are part of the Component Object Model
(COM), a set of programming standards developed by
Microsoft that has many beneficial features:
– Code written in one language can work with code written in

another language (e.g. existing ArcObjects are C++, your new
classes are VBA)

– This allows the reuse of classes, between components and
modules of one piece of software, or even between applications

– This provides a standard for creating classes and interacting
and communicating with them, through their interfaces

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 10 – Programming with interfaces

• Once written, the code for an interface never changes
– This way, once some functionality is implemented, it persists,

and future programmers can always rely on it working in the
same way, even in newer versions of the software

• But more/multiple interfaces can be added to add more
functionality
– e.g. perhaps we want to add something to the Elephant class

lacking in IElephant, so we implement it in IElephant2

• It is important to understand that the same interface can
be available for use with multiple classes, and to fully
make sense of this, you need to be aware of two important
concepts in OOP: Inheritance and Polymorphism

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 10 – Programming with interfaces

• In object-oriented programming, inheritance is a way to
form new classes using the characteristics of classes that
have already been defined

• The new classes, known as derived classes, take over (or
inherit) properties and methods (and interfaces) of the
pre-existing classes, which are referred to as base classes

Elephant
TuskLength: Integer

Trumpet

Age: Integer

Name: String

Sleep

IElephant

IAnimal

Here, the Elephant
class might inherit
from the Animal
Class, including the
two properties, one
method AND the
interface (IAnimal)
shown

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 10 – Programming with interfaces

• A related concept is polymorphism, which in this
context, is descriptive of the fact that many classes can
share the same interface

• This should make more sense once we start examining
Chapter 11 which, amongst other things, will expand our
understanding of the relationships between classes

• For our purposes now, we need to know that multiple
classes can have the same interface AND that the
classes you create can use interfaces of existing
ArcObjects classes
– Another way of putting this is you can create variants of

existing classes, and take advantage of their existing interfaces

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 10 – Programming with interfaces

• When we instantiate a COM object with interfaces, we
specify what interface we will be using right up front

• Recall when we were working with the Elephant class
(and it was a simple object without interfaces), the
declaration line looked like this:
Dim E As Elephant

• Now that we have an Elephant class with both an
IElephant and IAnimal interface, we have to specify
which we are going to use:
Dim E As IElephant

• The naming convention for interfaces is to name them
ISomething (e.g. IAnimal, IApplication, IDocument)

David Tenenbaum – EEOS 472 – UMass Boston

Using IApplication and IDocument

• When we start ArcMap and open a map document, we can
always count on there being two objects that already
exist:
– An Application object variable named Application
– An MxDocument object variable named ThisDocument

• As ArcObjects developed in the COM framework, these
objects naturally have interfaces, known as IApplication
and IDocument respectively

• Often, you will write code that begins with these objects
(and interfaces) and navigate to other objects (and
interfaces) from these [more on this in the next section
and in Chapter 11]

David Tenenbaum – EEOS 472 – UMass Boston

Using multiple interfaces

• Once you start working with objects with multiple
interfaces, you have to keep track of what you are doing /
make sure you have the right interface for the
properties and methods you need

• Quite often, you will have a variable declared for an
interface for an object and decide that you need another
interface, and need to write the code to switch

• Suppose we created an Elephant object using the
IElephant interface, and set its TuskLength:
Dim pElephant1 As IElephant
Set pElephant1 = New Elephant

pElephant1.TuskLength = 6

David Tenenbaum – EEOS 472 – UMass Boston

Using multiple interfaces

• This makes sense, because the TuskLength property is
located on the IElephant interface:

Elephant
TuskLength: Integer

Trumpet

Age: Integer

Name: String

Sleep

IElephant

IAnimal

• But what if we now want to set our new Elephant’s
Name; we cannot do so on the IElephant interface
– We need the IAnimal interface, because that is where the

Name property is located

David Tenenbaum – EEOS 472 – UMass Boston

Using multiple interfaces

• First, we must declare a new variable that points to the
IAnimal interface
Dim pAnimal1 As IAnimal

• Now, we can use Set keyword to set our new pAnimal1
to be equal to be our existing pElephant1 to indicate it
is the same object (but with a different interface):
Set pAnimal1 = pElephant1

• Now, we have access to the interface we need to set our
Elephant’s Name:
pAnimal1.Name = “Dumbo”

David Tenenbaum – EEOS 472 – UMass Boston

Next Topic:

The object model, UML diagrams,
and making tools

(after the mid-term review & exam)

