
David Tenenbaum – EEOS 472 – UMass Boston

Using loops and debugging code

Chapter 7 – Looping your code
– pp. 103-118
– Exercises 7A & 7B

Chapter 8 – Fixing Bugs
– pp. 119-132
– Exercise 8

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 7 – Looping your code

• Coding a For loop
• Coding a Do loop

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 7 – Looping your code

• It is quite common to have software perform some task
repeatedly, whether it is:
– Until it has been done for each member of a set, e.g. for each

record in a shapefile, do the following …
– Until some condition is satisfied, e.g. check the distance

between a point of interest and all other points in a shapefile
until one is found that is less than a specified threshold

• This repeated execution of a few lines of code is called
looping, and VBA for ArcGIS provides coding
structures for both of these situations:
– A For loop can be used to execute code a given number of times
– A Do loop can be used execute code until a specified condition

is satisfied

David Tenenbaum – EEOS 472 – UMass Boston

Coding a For loop

• For loops begin with a line that specifies a variable that
will keep track of its iterations:
For variable = StartValue To EndValue (Step StepValue)

• The StartValue and EndValue specify the range over
which the variable should be iterated, e.g. in a basic
example:
For i = 1 To 10

the loop will be executed 10 times, for each value
between 1 and 10, with the value of i being increased by
1 on each iteration {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

David Tenenbaum – EEOS 472 – UMass Boston

Coding a For loop

• Optionally, we can also use the Step keyword to change
the increments, as we will in the exercise when we will
use a For loop to populate some choices in a pulldown:
For intYear = 1930 To 2000 (Step 10)

{1930, 1940, 1950, 1960, 1970, 1980, 1990, 2000}

David Tenenbaum – EEOS 472 – UMass Boston

Coding a For loop

• For loops end with a Next statement, which simply
indicates where the body of the loop ends (the body of
the loop being everything between the For and the Next)

• Usually, the For loop will run as many times as the
iterator specifies that it should, but there is one other
way to write code to exit a For loop:
– An Exit For statement can be placed in the body of the loop,

usually within an If Then statement so that if a specified
condition occurs, rather than completing the loop’s usual number
of iterations, we can jump straight to the Next statement

– This is a useful approach when we plan to search through a
number of items (say, all the layers in a map), until we find the
right one; once we find it, there is no need to look at the rest

David Tenenbaum – EEOS 472 – UMass Boston

Coding a For loop

– This is a useful approach when we plan to search through a
number of items (say, all the layers in a map), until we find the
right one; once we find it, there is no need to look at the rest:

Dim pZMap as IMap
Dim x as Integer

For x = o to pMaps.Count – 1
If pMap.Item(X).Name = “zoning” Then

set pZMap = pMaps.Item(x)
Exit For

End If
Next x

…

David Tenenbaum – EEOS 472 – UMass Boston

Coding a Do loop
• Do loops are used in the other situation, when you want

some code repeated until some condition is satisfied
• This can take two forms:

Do While – Runs the loop while the specified expression is true
Do Until – Runs the loop while the specified expression is false

• Structurally, Do loops look a lot like For loops:
– They have an opening line, that in this case specifies the

expression to be checked to see if the loop should run again:
Do While|Until Expression

– Rather than ending with a Next, they end with a Loop statement
Loop

– You can use an Exit Do to leave the loop from within its body
Exit Do

David Tenenbaum – EEOS 472 – UMass Boston

Coding a Do loop
• For example, suppose we need to move through all the

layers in a map, but we do not know how many there are;
we can use a Do loop like so:
‘Layer enum example
Dim pLayer as ILayer
Dim pMapLayers as IEnumLayer
Set pMapLayers = pMap.Layers

Set pLayer = pMapLayers.next
Do Until pLayer is Nothing

msgbox pLayer.Name
set pLayer = pMapLayers.next

Loop

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 8 – Fixing bugs

• Using the debug tools

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 8 – Fixing bugs

• Now that you have completed a few of the exercises, you
have almost certainly had the experience of having your
code not run properly, and having had ArcGIS greet you
with an error message instead

• It is very easy, through small errors in syntax, to get into
this situation and create code with a bug

• Fortunately, the ArcGIS VBA environment provides us
with some tools to make it easier to identify and correct
any bugs in our code

• First, though, it is worthwhile to identify three different
kinds of errors that we might encounter, what their
causes are, and what we can do about them

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 8 – Fixing bugs – Compile Errors

• When the code we write is converted into the form that
the computer will execute, this is called compiling
– We can distinguish between the code we can read (the VBA

code) and the code the computer’s processor can read (which
is binary and called machine code or assembler language)

• As the VBA compiles, the software can detect when
something doesn’t quite make sense and the VBA
cannot be compiled. Some common reasons this occurs:
– You make a syntax error by misspelling something
– You make an error by misusing VBA (forgetting an argument,

not closing a loop, trying to use a method without an object)

• VBA will highlight where you made the error

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 8 – Fixing bugs – Run-time Errors
• It is possible for your code to compile successfully, but

still cause errors when you try to run it. These errors
are known as run-time errors

• Unfortunately, these cannot be detected before the fact,
because even though there is nothing wrong with the
syntax, what your code asks the computer to do is
impossible or prohibited in some way. Some common
examples of this are:
– Illegal math, such as a divide by zero error (syntactically valid,

but mathematically impossible, e.g. Acres = 40000 / 0)
– Type mismatch errors, where you try to use two kinds of

objects together in a way that is not viable (e.g. a mathematical
expression containing a string like Acres = “SqFt” / 43650)

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 8 – Fixing bugs – Logic Errors
• It is possible for your code to compile successfully and

run successfully, but when it does running, it does not
produce the desired result. When this is the case, the
programmer has usually committed an error known as a
logic error

• Unfortunately, the software itself cannot detect a logic
error: You, the programmer, have to know what your
software is supposed to do, and when it doesn’t do that,
you have to be the one who figures out what went wrong

• The key to detecting logic errors is to test your code,
usually thoroughly, trying to make it encounter every
possible condition it is likely to encounter in regular use

David Tenenbaum – EEOS 472 – UMass Boston

Using the debug tools

• Regardless of which of the three types of errors you
encounter, you can use the VBA Debug toolbar to help
you figure out what is wrong, and correct the problem

• The key capability of the Debug toolbar is the ability to
control the rate at which your code runs, so you can
check and see what is going on:
– Using the Step Into button, you can run your code one line at a

time until you see an error occur
– Using Breakpoints, you can allow the code to run up until a

certain point, where you can have a closer look (very useful if
you have a lot of lines of code, or loops with many iterations,
such that stepping through every line would take a really long
time)

David Tenenbaum – EEOS 472 – UMass Boston

Using the debug tools

• Other buttons on the Debug toolbar are useful:
– The Step Over button is similar to Step Into, but will

successfully execute a procedure call (and run the procedure in
its entirety) before returning to the next line

– The Step Out button will execute the remaining lines of the
current procedure, and then stop after its closing line

– The Run Sub/Userform button is particularly important: It will
proceed to run the rest of the code, up until a breakpoint is
encountered (if there is one)

• Another key when debugging is checking on the values
of variables at various points during code execution,
either by hovering the mouse over them, or using the
Locals Window to see the values of all local variables

David Tenenbaum – EEOS 472 – UMass Boston

Next Topic:

Making objects and using interfaces

