
David Tenenbaum – EEOS 472 – UMass Boston

Working with layouts and editing data

Chapter 19 – Making dynamic layouts
– pp. 359-376
– Exercises 19A & 19B

Chapter 20 – Editing tables
– pp. 377-401
– Exercises 20A & 20B

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 19 – Making dynamic layouts

• Naming elements
• Manipulating text elements

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 19 – Making dynamic layouts
• All the items found in a map layouts are, within VBA,

objects known as Elements
– The Element class is an abstract class, which forms of the basis

of several types of elements (we used GraphicElements in our
Chapter 12 exercises):

PageLayout
Class

FrameElement
Abstract

*

MapFrame
CoClass

MapSurroundFrame
CoClass

TextElement
CoClass

Element
Abstract

GraphicElement
Abstract

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 19 – Making dynamic layouts
• The split between FrameElement and GraphicElement

is important, because they each behave differently:
– FrameElements (like data frames and their associated elements)

update to reflect any changes in the map shown; On the other
hand, GraphicElements do not … normally they are static

PageLayout
Class

FrameElement
Abstract

*

MapFrame
CoClass

MapSurroundFrame
CoClass

TextElement
CoClass

Element
Abstract

GraphicElement
Abstract

This linkage between
these coclasses is our
indication of their
relationship; the
MapSurroundFrame
will update when the
MapFrame updates,
for example.

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 19 – Making dynamic layouts

• We will write code to make the
static GraphicElements in a
layout change in response to the
changes a user makes in the
FrameElements

• When we work with the set of
elements in a layout, it is made
easier by the fact that we have
some interfaces on the
PageLayout class that make it
easier to work with a collection
of elements:

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 19 – Making dynamic layouts

• Both IGraphicsContainer & IGraphicsContainerSelect
can be used to collect all kinds of elements (Frame and
Graphic alike)

• You can use IGraphicsContainer to add, delete and
reorder elements (in ways similar to other collection
objects we have used before)

• The IGraphicsContainerSelect interface provides a
method (DominantElement) by which you can get the
currently selected element(s), and also provides an
ElementSelectionCount property to get the current
number of selected elements

David Tenenbaum – EEOS 472 – UMass Boston

Naming elements
• In this chapter’s exercises,

you will change the text
elements in your layout
based on some of the code
you have developed in
previous chapters

• This involves finding the
right elements, and
updating their properties
according to choices the
user makes

• The tricky part of this is
identifying the elements
you need to change; this is
easy visually, but hard to
do by code

David Tenenbaum – EEOS 472 – UMass Boston

Naming elements

• IElementProperties2
provides a Name
property
– Once this has been set,

we have an easy way
to find an particular
element within the
graphics container

• We will create
buttons to let us get
and set element
names to make this
convenient for the
user

David Tenenbaum – EEOS 472 – UMass Boston

Manipulating text elements

• Once we have got the functionality set up to get and set
our elements’ names, we will make use of it

• We will use the Name property to find particular
elements by checking through each of the elements that is
present in the graphics container to find the right one
(based on the name matching)

• We begin by getting the graphics container we need,
letting VBA do an automatic QueryInterface for us:
Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument
Dim pGraphics As IGraphicsContainer
Set pGraphics = pMxDoc.PageLayout

David Tenenbaum – EEOS 472 – UMass Boston

Manipulating text elements

• We can now get elements from the graphics container
sequentially using its Next method:
– The Next method returns the IElement interface of the element

it gets, but we can use an automatic QueryInterface to get the
interface we really want (IElementProperties2, that has the
Name property on it):

Dim pElementProp As IElementProperties2
Set pElementProp = pGraphics.Next

• Each time we get the next element, we can then check its
name against what we are looking for using an If Then
(or Case) statement:
If pElementProp.Name = “ToxicMapTitle” Then

• Once we find the right one, we can set its Text property

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 20 – Editing tables

• Adding fields
• Getting and setting values

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 20 – Editing tables

• Recall that the features we work with in ArcGIS are
actually stored as records in a table:

• Tables have a second dimension as well: Columns in the
table represent categories of information. These are
actually stored as fields in a table

• The intersection of a record and a field is a cell; this
holds a particular piece of information known as a value

Table
class *

Feature
class

*

IRow

IFeature

Row
class

FeatureClass
class

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 20 – Editing tables

• There are two ways we will modify tables:
1. We will add fields to tables to increase the number of

categories of information we can store in them
2. We will edit cell values stored in the table

• These are absolutely key skills for an ArcGIS VBA
coder: Once you write your custom application to do
some spatial analysis, you will need to be able to store
the results!

• Editing cell values will make use of cursors (which we
worked with in Chapter 18)

– We will make cursors, move their pointer to a particular record,
and specify a particular field to specify the cell of interest

David Tenenbaum – EEOS 472 – UMass Boston

Adding fields
• A feature class has a Fields object, which is a collection

comprised of all of its Field objects:

Map
CoClass

FeatureLayer
CoClass

*

IMxDocument
IDocument

IMap

MxDocument
CoClass

Focusmap: IMap

Layer:ILayer

FeatureClass: IFeatureClass

*

IFeatureLayer

FeatureClass
CoClassIFeatureClass

Fields
CoClassIFields

Field
CoClass

IField

1..*

David Tenenbaum – EEOS 472 – UMass Boston

Adding fields
• To add a field to a feature class, you first have to make a

new field from the Field coclass in the usual fashion:
Dim pField As IField
Set pField = New Field

• Once you have created the field, you must set its
properties to make it suitable for the kind of information
you want to store within it
– This needs to be done before it gets added to table; once added

to a table you can no longer change the Field’s properties

• The Field coclass has two nearly identical interfaces,
with one key difference between them: One is solely
designed for getting properties, and the other is for
setting them

David Tenenbaum – EEOS 472 – UMass Boston

Adding fields
• The IField interface has

only left-hand barbells, so
it can only be used to get a
Field’s properties, but not
set them

• The IFieldEdit interface
has only right-hand
barbells, so it can only be
used to set a Field’s
properties, but not get them

• BUT … IFieldEdit
inherits from IField, so …
(What does this mean?)

David Tenenbaum – EEOS 472 – UMass Boston

Adding fields

• Once you have made a field, use the IFieldEdit interface
to set its properties, either by having declared a variable
to that interface initially, or by switching to it now:
Dim pFieldField As IFieldEdit

Set pFieldEdit = pField

• The two properties of a Field that you will always need
to set are its name (which is a string) and the data type:
pFieldField.Name = “Population”

pFieldEdit.Type = esriFieldTypeInteger

• There are a number of field types, and you can look these
up in the help to see which of them you would want to use
for a particular kind of information

David Tenenbaum – EEOS 472 – UMass Boston

Adding fields
• Before adding a new field to a table, it is safest to first

check and make sure that table doesn’t already contain
a field with the same name
– This is where the Fields object comes in handy, because if has a

FindField request that will look for a field with a certain name:
Dim pFields As IFields
Set pFields = pFClass.Fields
Dim intPosPopField as Integer
intPosPopField = pFields.FindField(“Population”)

• The FindField request returns the index of a Field
object’s position in the Fields collection, with the first
field denoted by the value 0
– If FindField does not find a field with the specified name, it

returns the value -1

David Tenenbaum – EEOS 472 – UMass Boston

Adding fields

• We can now use an If Then statement to check if the
field is present or not, and proceed accordingly
If intPosPopField = -1 Then End If

• Supposing we do not find a field with a matching name
(because FindField does return -1), we can then add our
new field using the AddField method of IFeatureClass:
pFClass.AddField pField

• In Exercise 20A, we will develop code to add a field to a
specific feature class
– We will put the button for this in an unusual place: We will

place it on the feature layer context menu (the one you get
when you right-click a feature layer in the Table of Contents),
and only when the right kind of layer (feature) is clicked upon

David Tenenbaum – EEOS 472 – UMass Boston

Adding fields

• The required functionality for pulling up the feature
layer context menu when you right-click a feature layer in
the Table of Contents is accomplished through the
MxDocument object’s ContextItem property

• A user can right-click on lots of different things in the
GUI:
– This is why the ContextItem property returns the IUnknown

interface; lots of kinds of objects inherit this interface:
Dim pMxDoc as IMxDocument
Set pMxDoc = ThisDocument
Dim pUnknown As IUnknown
Set pUnknown = pMxDoc.ContextItem

David Tenenbaum – EEOS 472 – UMass Boston

Adding fields

• In the case of our code here, we know that the user has
right-clicked on a feature layer in the TOC, because
they can ONLY get to our button that runs this code if
they have done so

• Thus, we know what has been returned by the
ContextItem property is actually a feature layer:
Dim pFLayer as IFeatureLayer
Set pFLayer = pUnknown

• Finally, we can get the feature class from the feature
layer that was returned, so we can now proceed to add
our desired field:
Dim pFClass as IFeatureClass

Set pFClass = pFLayer.FeatureClass

David Tenenbaum – EEOS 472 – UMass Boston

Getting and setting values
• In Exercise 20B, you will accomplish two tasks:

1. You will cycle through all the records, examining the values
in a field, & replacing all Null values with calculated values

2. You will cycle through the values again and sum them up
– To go through all the records in a feature class, you will make a

feature cursor (recall them from Chapter 18):

FeatureClass
class

SelectionSet
class

Table
class

QueryFilter
CoClass

SpatialFilter
CoClass

Cursor
class

FeatureCursor
Class

David Tenenbaum – EEOS 472 – UMass Boston

Getting and setting values

• Recall that the IFeatureClass
interface (which we used to
make selection sets) has three
methods to make a feature
cursor:
1. The Insert method lets you add

new features to a feature class
2. The Update method lets you edit existing features
3. The Search method makes a cursor that contains all features

satisfying a query statement
– This is useful when you want to get information about

features but do not want to make any new features

David Tenenbaum – EEOS 472 – UMass Boston

Getting and setting values

• This time, we will make a feature cursor using the Update
method, and we do not need to make a query filter
because we want to get all the records (rather than a
subset of them):
Dim pFCursor As IFeatureCursor

Set pFCursor = pFClass.Update(Nothing, False)

• We can now move through the records one at a time with
the feature cursor’s NextFeature method:
Dim pFeature As IFeature

Set pFeature = pfCursor.NextFeature

• The NextFeature method can be repeated until the pointer
is pointing at the desired feature

David Tenenbaum – EEOS 472 – UMass Boston

Getting and setting values

• Once you have the right feature, you can use the Value
property on the IRowBuffer interface to get or set the
value for a field denoted by an index value, e.g.
pFeature.Value(3) = 60000

will set the value in the 4th field (remember, the first has
index = 0) for the record of interest to 60000

• Once this is done, you have changed that value in
memory; to make this a permanent change recorded in
the file corresponding to the table, use the feature cursor’s
UpdateFeature method:
pFCursor.UpdateFeature pFeature

• Use a Do Until loop to change all features in the cursor

David Tenenbaum – EEOS 472 – UMass Boston

EEOS 472 – Programming for
GIScience Applications

• Students will be provided with hands-on
experience, working with Visual Basic for
Applications (VBA), which is integrated into the
ArcGIS desktop geographic information system
(GIS). The goals are to help students:

1. Understand the key concepts of object-oriented
programming

2. Become skilled at using VBA to customize ArcGIS
3. Build capability and understanding in the

application of programming techniques to
GIScience applications

David Tenenbaum – EEOS 472 – UMass Boston

Next Topic:

Final review and final exam

