
David Tenenbaum – EEOS 472 – UMass Boston

Control of flow and modularization

Chapter 5 – Code for making decisions
– pp. 65-76
– Exercises 5A & 5B

Chapter 6 – Using subroutines and functions
– pp. 77-102
– Exercises 6A, 6B, 6C & 6D

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 5 – Code for making decisions

• Making a Case for branching
• Coding an If Then statement

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 5 – Code for making decisions

• For really simple operations, we can imagine writing
many lines of code that simply run in order from
beginning to end
– However, this would only work in a situation where there were

no variations in what those of lines were going to do, or what
data we would have to use

• It is far more common to have to deal with situations
where there are some uncertainties or variations or
different situations to deal with for our code
– For example, suppose we write some code to do something with

the features in a shapefile. Is it a point, line, or polygon
shapefile? Depending on which it is, maybe the code has to do
something different …

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 5 – Code for making decisions
• One way to think of this is that our code contains the

ability to respond to a multiple-choice question about
what it should do next, depending on different situations
that might be encountered

• A nice theoretical example in the text is the decision we
make when reaching a traffic light … depending on if it
is green, yellow, or red, we would do different things:
– green– keep driving
– yellow– proceed with caution
– red– stop

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 5 – Code for making decisions

• A more geographic example might be some code that
returns some statistics about a shapefile, which might
differ if the shapefile contains points, lines, or polygons:
– points – return the centroid of all points
– lines – return the total length of all lines combined
– polygons – return the total area of all polygons combined

• You can imagine that the code to do each of these things
would be quite different, and that we need a way both to
distinguish which of the three situations we encounter,
and then to run the appropriate lines of code

• ArcGIS VBA provides us two approaches: Case
statements and If Then statements

David Tenenbaum – EEOS 472 – UMass Boston

Making a Case for branching

• You can use the Case statement to deal with this sort of
multiple-choice situation by making a Case for every
possible choice

• The trick here is to able to enumerate (in your head, often
before the fact) every Case that could be encountered:
– One of the skills you will develop as a programmer is the ability

to imagine all the possible values some code might encounter at
a given line before the fact, but even so, very often you will have
to go back and later fix your code to deal with a situation you
had not anticipated

• A catch-all for the unexpected is Case Else, which is how
a Case statement deals with the situation where none of
the enumerated Cases apply

David Tenenbaum – EEOS 472 – UMass Boston

Select Case strUser
Case “Mark”

msgbox “Welcome Mark!”
Case “Dana”

msgbox “Welcome Dana!”
Case “Braden”

msgbox “Welcome Braden!”
Case Else

msgbox “You are not an authorized
user!”
End Select

Making a Case for branching
• The first line (Select Case) specifies what variable is

going to be used to choose which branch to follow
• Subsequent lines that begin with Case, followed by the

possible values, are used to make the decision through
an exact comparison of values:

David Tenenbaum – EEOS 472 – UMass Boston

Coding an If Then statement

• Alternatively, you can use the If Then statement structure
to deal with your multiple-choice situation (rather than
Case statements)

• The difference between Case statements and (the appeal
of) If Then statements is that the If Then structure can
deal with more complicated situations

• Unlike a Case statement where each Case is checked to
see if it is an exact match to a specified value, the way
that If statements work is on the basis of logic:
– If the logical expressions specified is true, then that particular

choice is the one selected, and that chunk of code runs

David Tenenbaum – EEOS 472 – UMass Boston

Coding an If Then statement

• Each If or ElseIf line is used to specify a logical
condition that could occur
– One tricky thing is to make each If and ElseIf logically

exclusive from one another … because if they are not, only the
first situation that is evaluated to be true is going to run (an
analogy to understand this: imagine a professor makes a
multiple choice question where multiple answers are correct, and
you are only allowed to choose one answer …)

• An Else section can be included to deal with any time a
situation is encountered when none of the If and ElseIfs
specified are applicable

David Tenenbaum – EEOS 472 – UMass Boston

Coding an If Then statement

• Structurally, there are no other significant differences
– Case can have several Cases and a Case Else
– If can have an If and several ElseIfs and an Else

• Just about anything you could do with Case statements,
you could do with If Then statements, although not vice-
versa

• The real power of If Then statements is the ability to
combine comparison operators, logical connectors and
functions to specify a range of complex situations:
– Comparison operators: >, <, <>, =, >=, <=
– Logical connectors: AND, OR
– Functions: IsNumeric, IsDate, IsString, IsNull, etc.

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 6 – Using subroutines and functions

• Calling a subroutine
• Passing values to a subroutine
• Making several calls to a single

subroutine
• Returning values with functions

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 6 – Using subroutines and functions

• You will recall that we previously worked with events
and event procedures:
– An event occurs when a user does something (performs an

action), e.g. a user clicks on a button: Associated with that
button’s click event is a number of lines of code that performs
some action

– We refer to the code associated with a given user action as an
event procedure, i.e. when a user clicks on a CommandButton,
then the CommandButton’s click event procedure runs

• We are now going to work with other blocks of code that
do something (subroutines and functions) that differ from
event procedures by the circumstances under which
they are triggered

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 6 – Using subroutines and functions

• An event procedure is triggered by an event; that is what
causes it to start running

• A subroutine can be thought of as a procedure that runs
when it is called by another procedure (whether an
event procedure, or another subroutine)

• You can think of a function as being much like a
subroutine (in that it is several lines of code that are
written to do something in particular, that it is triggered by
another calling procedure, etc.) with one key difference:
– A function returns a specific value (when it is finished) to the

line of code that called it you can think of this as functions
having some result that it gives back when finished

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 6 – Using subroutines and functions

• The appeal of building code using subroutines and
functions is that it is modular:
– It makes it easier to keep complicated code organized because

it is broken up into chunks, each with a discrete purpose
– This, in turn, makes it easier to re-use individual modular

pieces of a larger codebase in different places
– It also has the desirable effect of making your code easier to

debug: If there is an error, and some particular functionality
does not work, it should be pretty easy to identify the particular
subroutine or function at fault because they are modular and
organized by their purpose

• This modularization of code is a very good practice for
promoting efficiency, both in code writing and running

David Tenenbaum – EEOS 472 – UMass Boston

Calling a subroutine

• Using the example from the text, you get a subroutine to
run with the Call statement:

Public Sub GetMessages()
Call Message

End Sub

• Here, GetMessages is calling another subroutine called
Message:

Public Sub Message()
MsgBox “Geography is terrific”

End Sub

• We can expand on this idea with one procedure calling
several others in a row, or a whole series of procedures
calling other procedures … whatever our task requires

David Tenenbaum – EEOS 472 – UMass Boston

Passing values to subroutine

• One of the consequences of this modular approach is that
subroutines sometimes need to pass values to one another
– e.g. suppose I have a subroutine that changes a layer in a map

from being visible to invisible, it might be convenient for me to
pass that layer to the subroutine when I call it

• Subroutines are capable of accepting an argument when
they are called, which facilitates this passing of a value to
the subroutine; this is not required but often useful

• Arguments are defined with a name and data type:
– e.g. Public Sub PrintMap (aPageSize As String)

• When the subroutine is called, the value is specified:
– e.g. Call PrintMap (“Letter”)

David Tenenbaum – EEOS 472 – UMass Boston

Making several calls to a single subroutine

• There is no impediment to calling the same subroutine
from different places, or calling the same subroutine
many times in the service of performing some particular
computing task …

• In fact, one of the reasons that the modular design
approach is desirable is specifically to make this possible
to do while minimizing the amount of effort required to
make the functionality work

David Tenenbaum – EEOS 472 – UMass Boston

Returning values with functions

• A function provides the other half of the capability to
pass values/objects back and forth between our modular
chunks of code:
– Subroutines accept an argument as input
– Functions accept an argument as input AND return a value as

output

• The syntax looks a little different because of this
– For example, suppose we have a function named InputBox, we

can make the function run, passing it the value “Enter a Parcel
Value”, AND assign its output value to a String called strValue
using the line:
strValue = InputBox(“Enter a Parcel Value”)

David Tenenbaum – EEOS 472 – UMass Boston

Next Topic:

Using loops and debugging code

