
David Tenenbaum – EEOS 472 – UMass Boston

Chapter 11 – Navigating object
model diagrams

• Getting layers
• Creating and assigning colors

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 11 – Navigating object
model diagrams

• In our previous lecture, we introduced Unified Modeling
Language (UML) diagrams for classes:

Parcel
Value: Currency

Zoning: String

Calculate Tax (): Currency

Class Name

Properties

Methods
Data Types

• While these diagrams are useful to us just to see the
characteristics of a class, their real power comes in
showing us the relationships between classes in the
ArcGIS object model

David Tenenbaum – EEOS 472 – UMass Boston

Bird
Abstract

Chicken
CoClass

Nest
Class

*

Wings
Class

2

Farm
CoClass

Egg
Class

• Is a type of
• Is composed of
• Creates a(n)
• Multiplicity
• Association

Chapter 11 – Navigating object model diagrams:
Relationships between classes

David Tenenbaum – EEOS 472 – UMass Boston

• Abstract classes are
symbolized by a 2-D
gray box

• They are neither
instantiable (using the
New keyword) nor are
they creatable (by using
requests to other classes)

• They define general
interfaces for subclasses

Chapter 11 – Navigating object model diagrams:
Abstract classes

David Tenenbaum – EEOS 472 – UMass Boston

• CoClasses are symbolized
by a 3-D gray box

• They are instantiable,
using the New keyword,
e.g.:

Dim pMap as IMap
Set pMap = New Map

• They are creatable, e.g.:
Dim pMap as IMap
Set pMap =

pMxDocument.FocusMap

Chapter 11 – Navigating object model diagrams:
CoClasses

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 11 – Navigating object model diagrams:
Classes

• Classes are symbolized by
a 3-D white box

• They are not instantiable
(you cannot make one
using the New keyword)

• They are creatable, you
must obtain instances
from other objects, e.g.:
Dim pNewRow as IRow
Set pNewRow =

pTable.CreateRow

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 11 – Navigating object model diagrams:
Reading object model diagrams

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 12 – Making tools

• Reporting coordinates
• Drawing graphics
• Using TypeOf statments

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 12 – Making tools

• On multiple occasions earlier in the course, it has been
mentioned that tools in ArcGIS are different from
buttons

• This is obvious even from the user’s point of view:
Clicking on a button causes ArcGIS to do something
immediately, whereas clicking on a tool changes the
appearance of the cursor … and then the user then use
the mouse to control the cursor to use the tool to do
something

• As a budding ArcGIS programmer, you probably can
guess that developing the code for a tool is going to be
more complicated than it is for a button

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 12 – Making tools

• The key procedure for a button is the code associated
with its click event

• But for a tool, which the user can interact with in a
number of ways, there are many more events to code

• And beyond the number of events, developing a tool
requires you to have a broader understanding of a
variety of objects (maps, layers, geometry like points that
specify the position of the cursor)
– Hopefully you are becoming familiar with these many objects

and even if you are not …
– Hopefully you now know how to use the UML object model

diagrams to find out the things you need to know

David Tenenbaum – EEOS 472 – UMass Boston

Reporting coordinates

• Tools have a MouseMove event procedure that runs
whenever the user moves the cursor with the tool selected

• This procedure takes four arguments, that the user
specifies by using the mouse:
– button As Long
– shift as Long
– x As Long
– y As Long

• Each of these integers is a value that represents some
part of the mouse state: Button and shift reflect whether
the button or shift key is depressed, x and y report the
position in pixels of the mouse pointer

David Tenenbaum – EEOS 472 – UMass Boston

Reporting coordinates

• With the button and shift variables, If Then statements
can be used to create appropriate code for the various
permutations

• Further events like MouseDown and MouseUp respond
to pressing or releasing the mouse button

• Note that the x, y reported here are pixel positions in the
map display which (of course) are not in geographic
coordinates … but fortunately, we can navigate through
the object model to find the appropriate objects,
interfaces and properties to get the position of the map
pointer in geographic coordinates

David Tenenbaum – EEOS 472 – UMass Boston

Drawing graphics

• Graphics belong to an abstract
class called Element

• Element, has two abstract
subclasses (FrameElement &
GraphicElement)

• We are interested in
GraphicElement, which in
turn has coclasses under it
named MarkerElement,
LineElement,
PolygonElement, and
TextElement

David Tenenbaum – EEOS 472 – UMass Boston

Drawing graphics

• Note that the abstract element
class has a Geometry property

• This means that geometry
objects (like points, lines, and
polygons) are associated with
elements (MarkerElements,
LineElements, and
PolygonElements respectively)

• We thus can create appropriate
geometry objects (like points)
and use them to position
marker elements on a map

David Tenenbaum – EEOS 472 – UMass Boston

Drawing graphics

• Adding a graphic to a
Map is done through
the Map’s
IGraphicsContainer
interface

• Once added,
refreshing the Map
causes it to redraw
itself, including the
graphics associated
with it (see the text
for details)

David Tenenbaum – EEOS 472 – UMass Boston

Using TypeOf statements
• Once you have developed your tool for drawing graphics

at rescue sites in the Map View in Exercise 12B, we have
a problem:
– This tool would not work properly in the Layout View, which

does not operate in geographic units

• We need a way to distinguish between Map and Layout
Views to turn the tool on and off appropriately, and we
explore this in Exercise 12C, using TypeOf statements

• In this example, and in a diverse set of other situations
where having an object of the wrong type would break
our code (and return a type mismatch error), we can use
TypeOf (which returns TRUE or FALSE) to check if an
object is the required type

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 13 – Executing Commands

• Using CommandItems and
CommandBars

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 13 – Executing Commands

• As you have seen throughout in our exploration of
ArcGIS VBA, modularity and the reusability of
functionality and code is a key concern

• If at all possible, we want to avoid reinventing the wheel:
– If someone has already developed the capability to perform a

particular function, the last thing we want to do is replicate
their work; we want to be able to make use of it

• This is equally true of ArcGIS’ existing commands and
the functions they perform
– We do not get to see the code that runs behind them (they are

not written in VBA; using COM they were developed in C++)
– We can still call them, so we can include them in our code

David Tenenbaum – EEOS 472 – UMass Boston

Using CommandItems and CommandBars

• Toolbars are composed of commands, whether they
contain tools, buttons or menu choices
– They belong to the CommandBar class
– From the notation below, you can see a CommandBar is made

up of multiple CommandItems (commands)

CommandBars
Class

MxDocument
CoClass

CommandBar
Class

ICommandBar
ICommandItem

*

IDocument

ICommandBars

CommandItem
Class

ICommandItem *
Execute

• Commands have an interface
called ICommandItem, which
includes an Execute method,
which is used to make the
command run

David Tenenbaum – EEOS 472 – UMass Boston

Using CommandItems and CommandBars

• The CommandBars class (note the ‘s’ at the end) is a
collection of all the CommandBar objects available
– Note the same symbology here, showing the ‘composed of

multiple objects relationship’
• The find request on the

ICommandBars interface takes an
identifier as its argument
– COM classes have a GUID, which

stands for globally unique identifier
– To find a CommandItem, you need

its GUID … but where to get this?

CommandBars
Class

MxDocument
CoClass

CommandBar
Class

ICommandBar
ICommandItem

*

IDocument

ICommandBars

CommandItem
Class

ICommandItem *
Execute

Find(in Identifier):
ICommandItem

David Tenenbaum – EEOS 472 – UMass Boston

Using CommandItems and CommandBars

• You can look GUIDs up in the Developer Help in the topic
ArcMap: Names and IDs of commands and commandbars:

David Tenenbaum – EEOS 472 – UMass Boston

Using CommandItems and CommandBars

• GUIDs are 32-character
hexidecimal strings, and
as such are inconvenient
to copy and paste into
code

• Instead, we can use
procedures built into
the ArcID code module
of the normal.mxt project
to fetch them

• These make it easy to get
a GUID by getting the
appropriately named
property of ArcID ArcID.SketchTool_Angle

David Tenenbaum – EEOS 472 – UMass Boston

Using CommandItems and CommandBars

• Putting this all together:
Dim pCommandItem As ICommandItem

Set pCommandItem = CommandBars.Find(ArcID.SketchTool_Angle)

pCommandItem.Execute

• Getting a toolbar works in a similar fashion
– Toolbars have GUIDs too, and can be found in the same way
Dim pCommandItem As ICommandItem

Set pCommandItem = CommandBars.Find(ArcID.Editor_EditorToolbar)

• However, toolbar properties and methods are on the
ICommandBar interface (not ICommandItem), so we
QueryInterface to get the right interface:
Dim pCommandBar As ICommandBar

Set pCommandBar = pCommandItem

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 14 – Adding layers to a map

• Adding a geodatabase feature class
• Adding a raster data set

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 14 – Adding layers to a map

• Adding layers to maps through the GUI is something
every user does when they use ArcMap

• Equally important to the developer is to be able to add
layers using code, as this is a necessary precondition to
doing something to the layers with the code

• This is really a four step process:
1. Create the layer from one of the layer coclasses
2. Get the data set from a storage location that the computer

can access (either locally or somewhere networked)
3. Associate the data set with the layer
4. Add the layer to the map

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 14 – Adding layers to a map

• The first step, creating the layer from one of the layer
coclasses, uses straightforward VBA code:
Dim pRLayer as IRasterLayer

Set pRLayer = New RasterLayer

• The key is to identify the appropriate type of layer:

Layer
Abstract

FeatureLayer
CoClass

RasterLayer
CoClass

GraphicsLayer
CoClass …

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 14 – Adding layers to a map

• The second step, getting the data set, is a little more
tricky … partly because ArcGIS is so flexible with data

– Because ArcGIS can work with so many different kinds of
data files, there are lots of variations on this

• To simplify the process, in all cases to get a data set, one
must first get its workspace, which one creates using a
workspace factory:

…

WorkspaceFactory
Abstract

Access
WorkspaceFactory

CoClass

Raster
WorkspaceFactory

CoClass

Shapefile
WorkspaceFactory

CoClass

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 14 – Adding layers to a map

• You select the right WorkspaceFactory from the many
coclasses, and use it to create the required workspace

• Workspaces are composed of data sets (which is what
we are really after)

• There are WorkspaceFactories specific to each type of
data set files we might want to add to our map:

…

WorkspaceFactory
Abstract

Access
WorkspaceFactory

CoClass

Raster
WorkspaceFactory

CoClass

Shapefile
WorkspaceFactory

CoClass

David Tenenbaum – EEOS 472 – UMass Boston

MxDocument
CoClass

Application
class

Map
CoClass

Imap
IActiveView

*

WorkspaceFactory
CoClass

WorkSpace
CoClass

Layer
Abstract

*

FeatureLayer
CoClass

IFeatureWorkspace

Set pFeatureLayer.FeatureClass = _
pFeatureWorkspace.OpenFeatureClass("Country")

Chapter 14 – Adding layers to a map
ShapeFile Example

David Tenenbaum – EEOS 472 – UMass Boston

Adding a geodatabase feature class

• Your first exercise will take you through the four step
process using a geodatabase feature class

• The first key thing that you need to know, both here and
in all cases really, is the kind of data file in question
this determines the right kind of WorkspaceFactory

• Here we are working with an MS Access database, so we
need an AccessWorkspaceFactory:
Dim pAWFactory As IWorkspaceFactory

Set pAWFactory = New AccessWorkspaceFactory

• The IWorkspaceFactory interface has an OpenFromFile
method that is used to open the file:
Dim pFWorkspace As IFeatureWorkspace

Set pFWorkspace = pAWFactory.OpenFromFile(“thefile.mdb”,0)

David Tenenbaum – EEOS 472 – UMass Boston

Adding a geodatabase feature class

• We now have the Workspace required and we can now
get the feature class with the OpenFeatureClass method
on the IFeatureWorkspace interface of our Workspace:
Dim pFClass As IFeatureClass

Set pFClass = pFWorkspace.OpenFeatureClass(“Roads”)

• Setting up a feature layer and associating it with the class
is relatively straightforward:
Dim pFLayer As IFeatureLayer

Set pFLayer = New FeatureLayer
Set pFLayer.FeatureClass = pFClass

• Finally, adding it to the Map document is equally
straightforward (see the text for the five lines of code
required)

David Tenenbaum – EEOS 472 – UMass Boston

Adding a raster data set

• Your second exercise involves a similar procedure, only
this time the data set is raster data rather than features
from within a geodatabase

• The only real wrinkle is switching to use the right
WorkspaceFactory for the particular kind of data …
but the hope is that once you have done this for two
different sorts of data, you will be comfortable with
doing it for any sort of data set

• This way, you will have worked with data sets from both
the vector and raster spatial data models, which covers
most of what you are likely to work with in real
applications

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 15 – Setting layer symbology

• Setting layer color
• Setting layer symbols
• Creating a class breaks renderer

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 15 – Setting layer symbology
Interface inheritance

• Recall back in Chapter 10 when we learned of class
inheritance: Derived classes can take over (or inherit)
properties, methods, and interfaces of the pre-existing
classes, which are referred to as base classes

• In this chapter, we look at a form of inheritance that is a
subset of the above, called interface inheritance:
– The properties and methods associated with a particular

interface are inherited, but properties and methods from other
interfaces on the same class ARE NOT inherited here

ISimpleLineSymbol
SimpleLineSymbol
ISimpleLineSymbol : ILineSymbol

Style: esriSimpleLineStyle

Name of the
inherited
interface

David Tenenbaum – EEOS 472 – UMass Boston

Setting layer color

• By default, when a layer is added to a map using the GUI,
it is a symbolized with a single random color

• This is the default renderer assigned to the layer
• As an alternative, we can write code to make use of

another renderer

FeatureLayer

Symbol

Color

*

Renderer
– Every feature layer has a

renderer
– Renderers are composed of

symbols
– Every symbol has a color

(different kinds of symbols will
have other sorts of characteristics
as well)

David Tenenbaum – EEOS 472 – UMass Boston

Setting layer color

• The Symbol abstract class has many subclasses; the
basic ones are:
– The MarkerSymbol class for points
– The LineSymbol class for lines
– The FillSymbol class for polygons

• These, in turn, are abstract classes that each have their
own subclasses (see page 266 of the text)

Symbol

MarkerSymbol LineSymbol FillSymbol

David Tenenbaum – EEOS 472 – UMass Boston

Setting layer color

• The usual approach applies here: Symbols and their
Colors are declared with the Dim keyword, created with
the New keyword, and properties are set with the
object.property syntax

• Every FeatureLayer has one FeatureRenderer;
FeatureRenderer is an abstract class with eight subclasses
for the various legend types:
– UniqueValueRenderer
– DotDensityRenderer
– SimpleRenderer
– ClassBreaksRenderer

– ScaleDependentRenderer
– ChartRenderer
– BitUniqueValueRenderer
– ProportionalSymbolRenderer

David Tenenbaum – EEOS 472 – UMass Boston

Setting layer symbols

• In addition to specifying the characteristics of symbols
yourself, you can also draw upon pre-existing sets of
symbols

• ArcGIS symbols are stored in the Style Manager,
grouped by style gallery classes that contain individual
style gallery items

• These are designed to be used for common thematic
maps of various types

• This is as simple as finding the styles you wish to use in
the Manager, and then navigating the associated objects
and classes (known as Enums, from enumerations) to
obtain those symbols for your use

David Tenenbaum – EEOS 472 – UMass Boston

Creating a class breaks renderer

• A particularly useful application of manipulating legends
/ renderers by code is to create them with particular
ranges of associated attribute values

• This kind of renderer is a ClassBreaksRenderer, and by
working with these through VBA, you can specify the
exact ranges of attribute values associated with
particular symbols

• You might use this approach if you are making many
similar maps, and want to ensure they all have
precisely the same legend (and ranges of values
associated with particular symbols)

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 16 – Using ArcCatalog
objects in ArcMap

• Adding layer files to ArcMap
• Making your own Add Data dialog

box

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 16 – Using ArcCatalog
objects in ArcMap

• The ArcCatalog object model has similar starting points
to that of ArcMap
– There is an ArcCatalog Application object named Application
– There is a GxDocument object named ThisDocument

• One key difference is the location where customizations
can be stored
– Unlike ArcMap with its options (the project .mxds, base

templates and the normal.mxt template), ArcCatalog has only
one place where customizations are stored, its own
normal.gxt template (this presents some problems in
conveniently distributing ArcCatalog customizations)

• Just as many objects in ArcMap have the Mx prefix in
their name, Gx is the common prefix for ArcCatalog

David Tenenbaum – EEOS 472 – UMass Boston

MxDocument
CoClass

Application
class

Map
CoClass

IMap
IActiveView

*

Layer
Abstract

*

FeatureLayer
CoClass

RasterLayer
CoClass

GraphicsLayer
CoClass …

ThisDocument

Normal template (normal.mxt)
Base template
Map document

Chapter 16 – Using ArcCatalog
objects in ArcMap

ArcMap Object
Model Diagram

David Tenenbaum – EEOS 472 – UMass Boston

Application
Class

GxCatalog
CoClass

GxObject
Abstract*

GxLayer
CoClass

GxMap
CoClass

GxTextfile
CoClass

GxPrjFile
CoClass

Normal template (normal.gxt)

GxFile
Class

Chapter 16 – Using ArcCatalog
objects in ArcMap

ThisDocument

ArcCatalog Object
Model Diagram

GxDocument
Class

David Tenenbaum – EEOS 472 – UMass Boston

Application
Class

GxCatalog
CoClass

GxObject
Abstract*

GxFile
Class

Chapter 16 – Using ArcCatalog
objects in ArcMap

• The ArcCatalog Application
is composed of GxCatalog
objects, which in turn are
composed of GxObjects

• A GxObject is any file,
folder, disk connection, or
other object you can click
on in the tree view shown in
the left-hand pane of
ArcCatalog

Several kinds of GxObjects,
shown in the tree view

GxDocument
Class

David Tenenbaum – EEOS 472 – UMass Boston

Adding layer files to ArcMap

• A layer file (extension .lyr) acts as an intermediate
between a spatial data source and the Map document: It
stores information about symbology, the path to the
data set etc.
– This simplifies adding a layer to a Map with a particular

symbolization; it is all set up already
GxObject

Abstract

GxLayer
CoClass

GxFile
CoClass

IGxFile

IGxLayer

Path

Layer

• A GxLayer is a GxFile, and
both are GxObjects, and as
they are coclasses, either can
be created directly

• To create one from a file,
use GxFile’s path property:

David Tenenbaum – EEOS 472 – UMass Boston

GxDialog
CoClass

ProjectedCoordinates
SystemDialog

CoClass

GeogaphicCoordinates
SystemDialog

CoClass

TableDefinitionDialog
CoClass

SpatialReference
Dialog

CoClass

Chapter 16 – Using ArcCatalog
objects in ArcMap

• There are five further coclasses in the ArcCatalog object
model diagram that represent dialog boxes

• Each has its uses, but particularly important to us is the
GxDialog, which gives us the capability to make
customized dialog boxes for specifying files to be
opened or saved

David Tenenbaum – EEOS 472 – UMass Boston

Making your own Add Data dialog box

• In many cases, rather than having a known path to the data
we want to add, instead we give the user the chance to
navigate to the correct directory and select the data
source using a dialog box

• The GxDialog is designed just
for this purpose: It allows to
create a file selection dialog
box that we can customize in
various ways (e.g. to allow
specific file types to be selected,
single or multiple files selected,
what the title and buttons say,
what directory it opens in etc.)

David Tenenbaum – EEOS 472 – UMass Boston

Making your own Add Data dialog box

• For example, to create a GxDialog titled “Add Data”, that
starts in “Catalog”, with a Button that says “Add”, and
only allows the selection of a single file:
Dim pGxDialog As IGxDialog
Set pGxDialog = New GxDialog
pGxDialog.ButtonCaption = “Add”
pGxDialog.StartingLocation = _
“Catalog”
pGxDialog.Title = “Add Data”

• We can further customize the
GxDialog by restricting the
type of files it can be used to
open using an ObjectFilter

David Tenenbaum – EEOS 472 – UMass Boston

Making your own Add Data dialog box

• There are a wide variety of types
of GxObjectFilter to suit whatever
you need your GxDialog to get

• For example to allow our GxDialog
to just open layers:
Dim pLFilter as IGxFilterLayers
Set pLFilter = New GxFilterLayers

• We then set our GxDialog’s
ObjectFilter property
accordingly:
Set pGxDialog.ObjectFilter = _
pLFilter

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 17 – Controlling feature display

• Making definition queries
• Selecting features and setting the

selection color

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 17 – Controlling feature display

• Both definition queries and feature selections are based
on the idea of a query, which you are undoubtedly
familiar with from your previous GIS coursework:
– Given a set of features, can we identify a subset of them that

meets a particular set of criteria
– E.g.: “Which states in the United States have a population of

over twelve million?” which as a query, would read:
“State_population > 12000000”

• A query contains a field name, an operator, and a value
• A definition query limits the features displayed to

include those that meet the criteria
• A feature selection highlights the appropriate features

David Tenenbaum – EEOS 472 – UMass Boston

Making definition queries

• In Exercise 17A, you will use a definition query that
specifies one state in a layer of the United States, and
the user will select which state using a combo box,
containing a pull down list of all the states’ name
attributes

• The resulting DefinitionExpression will look like this:
pStateLayerDef.DefinitionExpression _

“State_Name = ‘Arizona’”

• However, we will need to use some string operators to
form the query, since we will not know before the fact
the name of the state in question (as the user will select it
in a combo box)

David Tenenbaum – EEOS 472 – UMass Boston

Making definition queries

• We can obtain the name of the state the user selected in
the combo box using the combo box’s EditText
property, and we can store that in a string variable:
Dim StrState As String
strState = cboStateNames.EditText

• The tricky part is putting together the full query string,
which can do by concatenating several strings together
– Concatenation simply means attaching multiple strings

together, and it is done in VBA using the & symbol

• We know we want the query string to start with:
“State_Name = ‘”

– A single quote inside a string becomes a double quote

David Tenenbaum – EEOS 472 – UMass Boston

Making definition queries

• We also want the query string to end with a quote:
“‘”

• We want to sandwich the state name we stored in
strState in between those two parts, which we can do by
concatenating the three pieces like so:
“State_Name = ‘” & strState & “’”

• Altogether, that makes a single string that we want to use
for the definition expression, which we can declare and
store, and then use:
Dim strQuery As String

strQuery = “State_Name = ‘” & strState & “’”

pStateLayerDef.DefinitionExpression = strQuery

David Tenenbaum – EEOS 472 – UMass Boston

Selecting features and
setting the selection color

• Selecting features works in
a similar fashion: A query
is used to specify what to
select, although it uses
different objects, interfaces
and properties

• The SelectFeatures method
on the IFeatureSelection
interface is one way to
make a feature selection

• This method requires a
query filter, a selection
method, and the justOne
argument

David Tenenbaum – EEOS 472 – UMass Boston

Selecting features and
setting the selection color

• A QueryFilter is an object that can be used to build and
store query statements
– The query string is stored in the WhereClause property:
Dim pFilter As IQueryFilter
Set pFilter = NewQueryFilter
pFilter.WhereClause = “State_Name = ‘Arizona’”

• There are five types of selection methods that can be used
for the second argument of the SelectFeatures method:
– esriSelectionResultNew – Create totally new selection
– esriSelectionResultAdd – Add features to current selection
– esriSelectionResultSubtract – Remove features from current selection
– esriSelectionResultAnd – Select features from current selection
– esriSelectionResultXOR – Reverse status of features satisfying query

David Tenenbaum – EEOS 472 – UMass Boston

Selecting features and
setting the selection color

• The justOne argument of the SelectFeatures method is
a Boolean argument that specifies whether to find:
– The first feature that satisfies the query (when true) OR
– All features that satisfy the query (when false)

• Putting all three arguments together, the code that
would use the SelectFeatures method with a QueryFilter
called pFilter, performing a query where the results are
used in an entirely new selection, and would only look for
the first feature that satisfies the query would be:
pFSLayer.SelectFeatures _

pFilter, esriSelectionResultNew, True

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 18 – Working with selected features

• Using selection sets
• Using cursors

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 18 – Working with selected features

• Now that we know how to select a set of features, we
will next learn how to do something with them

• Selection sets collect selected features as a group
– A selection set is a container for a set of features
– Like all collection objects we can add and remove items
– Unlike other collections we have worked with, you CANNOT

access particular objects in the selection set
– One important property a selection set does have is a Count

property to report the total number of features it contains

• To work with selected features one at a time, you make
a cursor
– This usage of the word cursor is different from indicating the

position of text being edited in Word

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 18 – Working with selected features

• A cursor is like an Enum, with a pointer and method to
move from one object to the next (e.g. in a selection set)

• It can be used to obtain and modify a feature’s spatial
and attribute information
– When it comes to editing features to store (for example) the

results of some analysis you just performed using VBA code that
you wrote, a cursor is used to write results to feature datasets

Table
class *

Feature
class

*

IRow

IFeature

Row
class

FeatureClass
class

• Selection sets and cursors
are made up of records
– Records refers to both rows in

a table and features in a
feature class (each of the
latter is composed of several
of the former)

David Tenenbaum – EEOS 472 – UMass Boston

Using selection sets

• Every feature layer
has a SelectionSet
property
– Even if nothing is

selected; it is still
there, just empty

• Whether user-defined (using parts of the GUI like the
Select Features tool or the Selection menu) or set by
code (using a QueryFilter as we saw earlier in this class)
we can get the selection set by getting the SelectionSet
property on the FeatureLayer’s IFeatureSelection
interface

David Tenenbaum – EEOS 472 – UMass Boston

Using selection sets
• A feature layer can have multiple selection sets, but can

only display one of them at a time
– The one displayed is switched by setting the SelectionSet

property, and then refreshing the map’s active view

Set pFLayer.SelectionSet = pWestSelectionSet

pMxDoc.ActiveView.Refresh
SelectionSet

class

QueryFilter
CoClass

SpatialFilter
CoClass

Table
class

FeatureClass
class

• A Table and a QueryFilter are
both needed in order to create a
SelectionSet
– This is what the open diamond

symbol in the diagram to the right
means (that multiple objects are
needed to create another)

David Tenenbaum – EEOS 472 – UMass Boston

Using cursors
• A cursor can be used to obtain and modify a feature’s

spatial and attribute information
– It is a group of records organized in rows, like a table
– It is created using a query filter and a table
– A FeatureCursor is a type of cursor for use with features

FeatureClass
class

SelectionSet
class

Table
class

QueryFilter
CoClass

SpatialFilter
CoClass

Cursor
class

FeatureCursor
Class

David Tenenbaum – EEOS 472 – UMass Boston

Using cursors

• The IFeatureClass interface
(which we used to make
selection sets) also has three
methods to make a feature
cursor:
1. The Insert method lets you add

new features to a feature class
2. The Update method lets you edit existing features
3. The Search method makes a cursor that contains all features

satisfying a query statement
– This is useful when you want to get information about

features but do not want to make any new features

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 19 – Making dynamic layouts

• Naming elements
• Manipulating text elements

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 19 – Making dynamic layouts
• All the items found in a map layouts are, within VBA,

objects known as Elements
– The Element class is an abstract class, which forms of the basis

of several types of elements (we used GraphicElements in our
Chapter 12 exercises):

PageLayout
Class

FrameElement
Abstract

*

MapFrame
CoClass

MapSurroundFrame
CoClass

TextElement
CoClass

Element
Abstract

GraphicElement
Abstract

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 19 – Making dynamic layouts
• The split between FrameElement and GraphicElement

is important, because they each behave differently:
– FrameElements (like data frames and their associated elements)

update to reflect any changes in the map shown; On the other
hand, GraphicElements do not … normally they are static

PageLayout
Class

FrameElement
Abstract

*

MapFrame
CoClass

MapSurroundFrame
CoClass

TextElement
CoClass

Element
Abstract

GraphicElement
Abstract

This linkage between
these coclasses is our
indication of their
relationship; the
MapSurroundFrame
will update when the
MapFrame updates,
for example.

David Tenenbaum – EEOS 472 – UMass Boston

Naming elements
• In this chapter’s exercises,

you will change the text
elements in your layout
based on some of the code
you have developed in
previous chapters

• This involves finding the
right elements, and
updating their properties
according to choices the
user makes

• The tricky part of this is
identifying the elements
you need to change; this is
easy visually, but hard to
do by code

David Tenenbaum – EEOS 472 – UMass Boston

Naming elements

• IElementProperties2
provides a Name
property
– Once this has been set,

we have an easy way
to find an particular
element within the
graphics container

• We will create
buttons to let us get
and set element
names to make this
convenient for the
user

David Tenenbaum – EEOS 472 – UMass Boston

Manipulating text elements

• Once we have got the functionality set up to get and set
our elements’ names, we will make use of it

• We will use the Name property to find particular
elements by checking through each of the elements that is
present in the graphics container to find the right one
(based on the name matching)

• We begin by getting the graphics container we need,
letting VBA do an automatic QueryInterface for us:
Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument
Dim pGraphics As IGraphicsContainer
Set pGraphics = pMxDoc.PageLayout

David Tenenbaum – EEOS 472 – UMass Boston

Manipulating text elements

• We can now get elements from the graphics container
sequentially using its Next method:
– The Next method returns the IElement interface of the element

it gets, but we can use an automatic QueryInterface to get the
interface we really want (IElementProperties2, that has the
Name property on it):

Dim pElementProp As IElementProperties2
Set pElementProp = pGraphics.Next

• Each time we get the next element, we can then check its
name against what we are looking for using an If Then
(or Case) statement:
If pElementProp.Name = “ToxicMapTitle” Then

• Once we find the right one, we can set its Text property

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 20 – Editing tables

• Adding fields
• Getting and setting values

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 20 – Editing tables

• Recall that the features we work with in ArcGIS are
actually stored as records in a table:

• Tables have a second dimension as well: Columns in the
table represent categories of information. These are
actually stored as fields in a table

• The intersection of a record and a field is a cell; this
holds a particular piece of information known as a value

Table
class *

Feature
class

*

IRow

IFeature

Row
class

FeatureClass
class

David Tenenbaum – EEOS 472 – UMass Boston

Adding fields
• A feature class has a Fields object, which is a collection

comprised of all of its Field objects:

Map
CoClass

FeatureLayer
CoClass

*

IMxDocument
IDocument

IMap

MxDocument
CoClass

Focusmap: IMap

Layer:ILayer

FeatureClass: IFeatureClass

*

IFeatureLayer

FeatureClass
CoClassIFeatureClass

Fields
CoClassIFields

Field
CoClass

IField

1..*

David Tenenbaum – EEOS 472 – UMass Boston

Adding fields
• To add a field to a feature class, you first have to make a

new field from the Field coclass in the usual fashion:
Dim pField As IField
Set pField = New Field

• Once you have created the field, you must set its
properties to make it suitable for the kind of information
you want to store within it
– This needs to be done before it gets added to table; once added

to a table you can no longer change the Field’s properties

• The Field coclass has two nearly identical interfaces,
with one key difference between them: One is solely
designed for getting properties, and the other is for
setting them

David Tenenbaum – EEOS 472 – UMass Boston

Adding fields
• The IField interface has

only left-hand barbells, so
it can only be used to get a
Field’s properties, but not
set them

• The IFieldEdit interface
has only right-hand
barbells, so it can only be
used to set a Field’s
properties, but not get them

• BUT … IFieldEdit
inherits from IField, so …
(What does this mean?)

David Tenenbaum – EEOS 472 – UMass Boston

Adding fields

• Once you have made a field, use the IFieldEdit interface
to set its properties, either by having declared a variable
to that interface initially, or by switching to it now:
Dim pFieldField As IFieldEdit

Set pFieldEdit = pField

• The two properties of a Field that you will always need
to set are its name (which is a string) and the data type:
pFieldField.Name = “Population”

pFieldEdit.Type = esriFieldTypeInteger

• There are a number of field types, and you can look these
up in the help to see which of them you would want to use
for a particular kind of information

David Tenenbaum – EEOS 472 – UMass Boston

Getting and setting values

• This time, we will make a feature cursor using the Update
method, and we do not need to make a query filter
because we want to get all the records (rather than a
subset of them):
Dim pFCursor As IFeatureCursor

Set pFCursor = pFClass.Update(Nothing, False)

• We can now move through the records one at a time with
the feature cursor’s NextFeature method:
Dim pFeature As IFeature

Set pFeature = pfCursor.NextFeature

• The NextFeature method can be repeated until the pointer
is pointing at the desired feature

David Tenenbaum – EEOS 472 – UMass Boston

Getting and setting values

• Once you have the right feature, you can use the Value
property on the IRowBuffer interface to get or set the
value for a field denoted by an index value, e.g.
pFeature.Value(3) = 60000

will set the value in the 4th field (remember, the first has
index = 0) for the record of interest to 60000

• Once this is done, you have changed that value in
memory; to make this a permanent change recorded in
the file corresponding to the table, use the feature cursor’s
UpdateFeature method:
pFCursor.UpdateFeature pFeature

• Use a Do Until loop to change all features in the cursor

