Chapter 11 — Navigating object
model diagrams

o Getting layers
e Creating and assigning colors

Chapter 11 — Navigating object
model diagrams
 In our previous lecture, we introduced Unified Modeling

LLanguage (UML) diagrams for classes:

Class Name » | Parcel
. B Value: Currenc
Properties | | y o o—
B Zoning: String «
Methods > 4— Calculate Tax (): Currency <[

—= Data Types

* While these diagrams are useful to us just to see the
characteristics of a class, their real power comes in
showing us the relationships between classes in the

ArcGIS object model

Chapter 11 — Navigating object model diagrams:
Relationships between classes

e Iscomposed of
e Creates a(n) —
* Multiplicity <
e AsSsociation <

Is a type of \

Bird

Abstract

Farm
CoClass

Chicken

CoClass

¢

Nest
Class

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 11 — Navigating object model diagrams:
Abstract classes

e Abstract classes are
symbolized by a 2-D
gray box

e They are neither
Instantiable (using the
New keyword) nor are
they creatable (by using
requests to other classes)

* They define general
Interfaces for subclasses

/ StyleGallery in

TOCView

IComPropertySheetEvents o——

IComPropertySheetEvents : IlUnknown

[ActiveViewEvents O—

- OnApply

IContentsView O—

IContentsView : IUnknown

*

m=m Contextltern: Variant
W h\ind: lgtLE HANDLE
ng

W N

—IP ssEve tEII
- 5 Idedltm\
-l Showlin BI
m Visible: EII

Styles

-— Activ n paren H-ﬂ. d OLE_HANDLE
D tII'\-'ID ent)
-I—AddTSIchI (It 1: Variant)
-a— Deactivate

-I—Rfr'eh n lte

) Vartant)
< RemoveFromSeieciediiems (i ltem: Van

|DocumentEvents O—

_1;

TOCCatalogView

TOCDisplayView

TOCSelectionView

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 11 — Navigating object model diagrams:

CoCl

e CoClasses are symbolized
by a 3-D gray box
e They are instantiable,
using the New keyword,
e.g.:
Dim pMap as IMap
Set pMap = New Map
e They are creatable, e.g.:
Dim pMap as IMap

Set pMap =
pMxDocument.FocusMap

aSSeS

IMap

IBasicMap
IConnectionPointContainer
IDisplayAdmin
IDisplayEvents
|GraphicsContainer
|IGraphicsContainerselect
IMapBarriers
IMapBookmarks
MapGeographicTransformations
IPersist

IPersistStream
IRelationshipClassCollection
|SelectionEvents
|StandaloneTableCollection
ITableCollection
ITransformEvents
ViewManager

Map

[

IMap : IUnknown

m=0 ActiveGraphicsLayer: ILayer

-0 AnnotationEngine: lAnnotateMap

-l AreaCfinterest IEnvelope

m— Bamiers (pExtent: IEnvelope):
IBarrierCollection

m=— BasicGraphicsLayer: |GraphicsLayer

B=E ClipBorder: |Border

m=-m ClipGeometry. |[Geometry

Bl Description: String

=l DistanceUnits: esrilnits

B8 Expanded: Boolean

-0 FeatureSelaction: 1Selection

B8 IsFramed: Boolean

B— Layer (in Index: Long): ILayer

B— LayerCount: Long

B— Layers (in UID: IUID, in recursive: Boolean).
IEnumLayer

B8 MapScale: Double

B MapSurround {in Index: Long): IMapSurround

B MapSurroundCount: Long

m=-m NapUnits: esrilnits

m—-m MName: String

m=m FeferenceScale; Double

m— SeleciionCount; Long

B=0 SpatialReference: |SpatialReference

m=-m SpatialReferencelocked: Boolean

Bl UseSymbolLevels: Boolean

[ARRARRRARARRARAN

-4— AddLayer (in Layer: ILayer)

-4— AddLayers (in Layers: IEnumLayer, in
autoArrange: Boolean)

-a— AddMapSurround {in MapSurround:
IMapSurround)

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 11 — Navigating object model diagrams:
Classes

« (Classes are symbolized by
a 3-D white box

e They are not instantiable
(you cannot make one
using the New keyword)

e They are creatable, you
must obtain instances |
from other objects, e.g.: | ...

Dim pNewRow as IRow

Set pNewRow =
pTable.CreateRow

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 11 — Navigating object model diagrams:
Reading object model diagrams

Class Diagram AbstractClass
Ke InterfaceA O—— Interface of interest | I
y (Optional)InterfaceB O— |
Type inheritance
I I
CoClass Instantiation
InterfaceD O—— o *
InterfaceB o— | Interface of interest Composition
< Class
InterfaceG O— | Interface of interest
InterfaceM eo—
(=classname=)Interface0 e
Special Interfaces Association 1.7 Muitiplicity
(Optional) represents interfaces that are
inherited by some subclasses but not all, C—— Inbound Interface
The subclasses list the optional -
i i " &—— Outbound Interface enumeration
interfaces they implement. firstvalue - firstEnumeration
(Instance) reprasents interfaces that are Interface key secondValus - secondEnumeration
only on specific instances of the class. m— Properly Get
—i groper?; Put
{<classname>) indicates the name of 2 :Fgg Err_t\ff gL?tJ!?;nRefer ance Structure key <=Struct=>
the helper class required to support this - firstMember. Type
event interface in Visual Basic. -4 Method secondMember: Type

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 12 — Making tools

* Reporting coordinates
e Drawing graphics
e Using TypeOf statments

Chapter 12 — Making tools

« On multiple occasions earlier in the course, it has been
mentioned that tools in ArcGIS are different from
buttons

e This Is obvious even from the user’s point of view:
Clicking on a button causes ArcGIS to do something
Immediately, whereas clicking on a tool changes the
appearance of the cursor ... and then the user then use
the mouse to control the cursor to use the tool to do
something

* As abudding ArcGIS programmer, you probably can
guess that developing the code for a tool iIs going to be
more complicated than it is for a button

Chapter 12 — Making tools

e The key procedure for a button is the code associated
with its click event

« But for a tool, which the user can interact with in a
number of ways, there are many more events to code

« And beyond the number of events, developing a tool
requires you to have a broader understanding of a
variety of objects (maps, layers, geometry like points that
specify the position of the cursor)

— Hopefully you are becoming familiar with these many objects
and even if you are not ...

— Hopefully you now know how to use the UML object model
diagrams to find out the things you need to know

David Tenenbaum — EEOS 472 — UMass Boston

Reporting coordinates

e Tools have a MouseMove event procedure that runs
whenever the user moves the cursor with the tool selected

 This procedure takes four arguments, that the user
specifies by using the mouse:
— button As Long
— shift as Long
— X As Long
— y As Long

e Each of these Integers Is a value that represents some
part of the mouse state: Button and shift reflect whether
the button or shift key Is depressed, x and y report the
position In pixels of the mouse pointer

Reporting coordinates

 With the button and shift variables, If Then statements
can be used to create appropriate code for the various
permutations

 Further events like MouseDown and MouseUp respond
to pressing or releasing the mouse button

* Note that the x, vy reported here are pixel positions In the
map display which (of course) are not in geographic
coordinates ... but fortunately, we can navigate through
the object model to find the appropriate objects,
Interfaces and properties to get the position of the map
pointer in geographic coordinates

Drawing graphics

» Graphics belong to an abstract
class called Element

» Element, has two abstract
subclasses (FrameElement &
GraphicElement)

 We are Interested In
GraphicElement, which in
turn has coclasses under it
named MarkerElement,
LineElement,
PolygonElement, and
TextElement

|
Element

IElement C—H

IElement : IUnknown

IBoundsProperties
IClone

1T

Bl Geometry: 1Geometry
B=l | ocked: Boolean
B— SelectionTracker: 13electionTracker

-4 Activate (in Display: IDisplay)

-4— Deactivate

= [raw (in Display: IDisplay, in trackCancel:
ITrackCancel)

-g=— HitTest (in X: Double, in ¥ Double, in
Tolerance: Double): Boolean

= (CueryBounds {in Display: IDisplay, in
Bounds: IEnvelope)

-#— QueryOutline {in Display: IDisplay, in Qutline:
IPalygon)

|ElementProperties2

IElementProperties2 : IUnknown

IElementProperties

IPersistStream

B-E AutoTransform: Boolean
W=l CustomProperty: Variant
Bl Name: String
=8 ReferenceScale: Double
Bl Type: Sfring

IPropertySupport

-4— CanRotate: Boolean

o_
o_
IPersist O—
D_
o_
O_

ITransform2D

ITransform2D : IUnknown

-i— Move (dx: Double, dy: Double)

- MoveVector (v: ILing)

-4— Rotate (Origin: IPeint, RotationAngle: Double)

= Scale (Origin: IPoint, sx: Double, sy: Double)

-#— Transform {Direction: esriTransformDirection,
Transformation: ITransformation)

|

GraphicElement

|GraphicElement O——

IGraphicElement : IUnknown

B0 SpatialReference: 1SpatialReference

A

David Tenenbaum — EEOS 472 — UMass Boston

Drawing graphics

e Note that the abstract element
class has a Geometry property

e This means that geometry
objects (like points, lines, and
polygons) are associated with
elements (MarkerElements,
LineElements, and
PolygonElements respectively)

* We thus can create appropriate
geometry objects (like points)
and use them to position
marker elements on a map

IElement O—
|IBoundsProperties O—

Element
IElement : IUnknown

B Geometry: IGeometr\;
B=l | ocke: d Boolea

IClone © m— SelectionTracker: ISelectionTracker
4—*\t {DpIyIDpIy
-4— De=a
d—Daw[DlyIDly n trackCa
[TrackCancel)
- HitTes {XD ble, in Y: Double
Toler: DbI)BI
- (Jue ryE! d DprIDpr
Bounds: [Envelo
- Que r:.fOtI [DpIyIDpIy n Outlin
alygon
IElementProperties2 O— |ElementPrope

IElementProperties O—
IPersist O—
IPersistStream O—

IPropertySupport ©O—

ITransform2D ©——

ITransform2D : IUnkno

-— Mo (dD ble, dy: Double)

4—r\.-1 tor{ IL)

-1—F€tt Origin IP Rtt:\ngbI)
d—SI[Og I t x: Double, sy Do bl)
-— Tra esT nsformDirectio

(Dire
T f t IT nsformation)

i

GraphicElement

|GraphicElement O——

IGraphicElement : IUnknown

B0 SpatialReference: 1SpatialReference

A

David Tenenbaum — EEOS 472 — UMass Boston

Drawing graphics

» Adding a graphictoa _____
Map is done through e, a ="

Search Results

7 Library | Class | Member
e a S . esriCarto & |GraphicsContainer
. esri3DAnalyst & |GraphicsContainer3D

. esriCarto & |GraphicsContainerProperty

I G ra h i CSCO ntai n e r W esriCarto 2 |GraphicsContainerSelect
p Classes Members of 'IGraphicsContainer’

& IGPVariable llggAddElement |
- & |GPVariableManager =2 AddElements
I nter ace 2 IGPVariant == BringForward
& IGPVariantType =& BringToFront
B IGPVersioninfo =2 DeleteAllElements
& IGPVersioninfos =@ DeleteElement
2 IGPVirtualTableDomain =2 FindFrame
® n Ce a e & IGPWorkspaceDomain =2 GetElementOrder
1 21 IGPXYDomain =% LocateElements
- & IGPXYDomainType =@ LocateElementsByEnvelope
2 IGPZDomain =2 MoveElementFromGroup
re res I n g e ap 2 IGPZDomainType =2 MoveElementToGroup
2 |GradientFillSymbol =2 Next
- 21 1Graph == PutElementOrder
& |GraphicAttributeDashType =2 Reset
Causes I O re raW B |GraphicAttributeEnumType == SendBackward
& IGraphicAttributes =2 SendToBack
- - - & |GraphicAttribute Type =2 |UpdateElement
& |GraphicAttribute TypeUsinglJ
I Se I nC u I ng e &1 |GraphicElement
] & |GraphicElements
- - &1 |GraphicsComposite
2 GraphicsContainer
graphics assoclated = oo .

Sub AddElement(Element As |IElement, zorder As Long) ~
Member of esriCarto IGraphicsContainer

with it (see the text :
for detalls)

David Tenenbaum — EEOS 472 — UMass Boston

Using TypeOf statements

e Once you have developed your tool for drawing graphics
at rescue sites in the Map View in Exercise 12B, we have
a problem:

— This tool would not work properly in the Layout View, which
does not operate in geographic units
* We need a way to distinguish between Map and Layout
Views to turn the tool on and off appropriately, and we
explore this in Exercise 12C, using TypeOf statements

 In this example, and in a diverse set of other situations
where having an object of the wrong type would break
our code (and return a type mismatch error), we can use
TypeOf (which returns TRUE or FALSE) to check if an
object is the required type

Chapter 13 — Executing Commands

e Using Commandltems and
CommandBars

Chapter 13 — Executing Commands

* As you have seen throughout in our exploration of
ArcGIS VBA, modularity and the reusability of
functionality and code is a key concern

o |f at all possible, we want to avoid reinventing the wheel:

— If someone has already developed the capability to perform a
particular function, the last thing we want to do is replicate
their work; we want to be able to make use of it

e This is equally true of ArcGIS’ existing commands and
the functions they perform

— We do not get to see the code that runs behind them (they are
not written in VBA; using COM they were developed in C++)

— We can still call them, so we can include them in our code

David Tenenbaum — EEOS 472 — UMass Boston

Using CommandIltems and CommandBars

e Toolbars are composed of commands, whether they
contain tools, buttons or menu choices
— They belong to the CommandBar class

— From the notation below, you can see a CommandBar is made
up of multiple Commandltems (commands)

« Commands have an interface
called ICommandltem, which
Includes an Execute method,
which 1s used to make the
command run

ICommanditem Q= COomMmanditem
<«—Execute Class

*

IDocument

ICommandBars

ICommandBar
ICommandltem

O— MxDocument’

!

o CommandBars

Class

L.

CommandBar

> = Class

David Tenenbaum — EEOS 472 — UMass Boston

Using CommandIltems and CommandBars

 The CommandBars class (note the ‘s’ at the end) Is a
collection of all the CommandBar objects available

— Note the same symbology here, showing the ‘composed of
multiple objects relationship’

e The find request on the
|CommandBars interface takes an IDocument O=— MXDocument’

identifier as its argument ¢
— COM classes have a GUID, which S ——
stands for globally unique identifier Class
) ICommandBars (Q==|_Find(in Identifier)
— To find a Commandltem, you need \Commanditem
Its GUID ... but where to get this? $*

ICommandBar
* ICommandltem CommandBar

ICommanditem Q=i COMmandlitem & Class
<«—Execute Class

David Tenenbaum — EEOS 472 — UMass Boston

Using CommandIltems and CommandBars

e You can look GUIDs up in the Developer Help in the topic
ArcMap: Names and IDs of commands and commandbars:

E? ArcGIS Desktop Help for VB6 developers

e]
Hide Back

Qoments] Inde: 4| ¥

Type in the word(s) tc
List Topics

Selecttopic: Fou
Title
ICommandBar:Find
How Transform (Cor
IPersist Interface
clsIFDCommand.cle
ICommandBars:Fin
Developing with Arc
IPersistStream Interd
ICommandSubType
clsExportFlagsBarni
Proximity analysis
MNetwork Explorer
ltemDef:SubType
Introduction to COM
Detact Graphic Con
Flags on Selected .
ArcCatalog lds
ICommand:HelpCo
Implementing assoc
ArcGlobe lds
ICommand:HelpFile
clsFlagsOnSelJunc
IMultitem::HelpCont

<

| Search previous
[v' Match similar wor
[Searchtities only

||~

File Edit View Go Help

A

Type
Toolbar
Menu
Command
Command

Command

Command

Command

Command

Menu
Command

Command

Command

Home
e

£ i
Font Print Options
(8] (8] £ DUIt- OmIT
Caption Name
Main Menu Main Menu
File File_Menu
New File_New
Open File_Open
Save File_Save
Save As File_SaveAs
Save A Copy File_SaveCopyAs
Add Data File_AddData

Add Data From
GIS Portal

Geography
MNetwork

{ Add Data From
GIS Portal ¥

Add Website

AddInternetData_Menu

IMS_ManagelnternetDataURL

{ IMS_AddInternetDataMenu }

IMS_NewlInternetDatalURL

Command
Category

noneg

noneg

File

File

File

File

File

File

noneg

IM5

none

IMS

>

{1E739F59-E45F-11D
esriArcMapULMxMenul

{56599DD3-E464-11C
esriArcMapULMxFileMe
{119591DB-0255-11D
esriArcMapULMxFileMe
{119591DB-0255-11D
esriArcMapULMxFileMe

{119591DB-0255-11D
esriArcMapULMxFileMe

{119591DB-0255-11D
esriArcMapULMxFileMe

{119591DB-0255-11D
esriArcMapULMxFileMe

{E1F29C6B-4E6B-11D
esriArcMapULAddData

{5B43EFCE-8C6F-49F|
esriArcMapULAddInter

{C454EBA4-2DFD-49C
esriArcMapULAddInter

{6888A697-86CB-4AC
esridrcMapULAddInter

{C454EBA4-2DFD-49C
esriArcMapULAddInter
v

k)

David Tenenbaum — EEOS 472 — UMass Boston

Using CommandIltems and CommandBars

e GUIDs are 32-character
hexidecimal strings, and
as such are inconvenient
to copy and paste into
code

e |nstead, we can use
procedures built into
the ArclD code module
of the normal.mxt project
to fetch them

e These make it easy to get
a GUID by getting the
appropriately named
property of ArclD

aa-d #h

4 Microsoft Visual Basic - Normal.mxt

Fle Edt View Insert Format Debug Run Tools Add-Ins Window Help
yon o mbk BESFT B i col

ThisDocument
=-£3 References
Ei Reference to Normal.r

158

|
Properties - ArcID

x| [

ArcID Module

L]

Alphabetic 1 Categorized }

(ieme) I N

_
E . - Normal.mxt - ArclD (Code)
=-%% Normal (Normal.mxt) ‘lGeneral} ﬂ |lDecIaraliunsl ﬂ
[ArcMap Objects
=3 Modules g
¥ ArcD Public Property Get Adjustment ModifyLink() As UID
= & Project Dim u As New UID
=5 Archap Objects u = "{00432E2F-8746-4D13-B9FC-29465E16F0541}1"

Set Adjustment ModifyLink = u
End Property

Public Property Get Pagelayout NewPolygon () As UID
Dim u As New UID

u = "{00RA0163B-390D-44E3-8BC4-4C306FADSCAZ}"

Set PagelLayout_ NewPolygon = u

End Property

Public Property Get Georeferencing ControlPointAbortItem() As UID
Dim u As New UID

u = "{00FDB8BZ-F174-4485-B181-03C18073BC1D}"

Set Georeferencing ControlPointAbortItem = u

End Property

Public Property Get SketchTool Angle() As UID
Dim u As New TTD

u = "{02D578D1-42AB-11D2-84D6-0000F875B9C6} "I

5et SketchTool Angle =1
End Property

Dim u As New UID .
IR %

Public Property Get SketchTool Distance() As UID

ArclD.SketchTool Angle

David Tenenbaum — EEOS 472 — UMass Boston

Using CommandIltems and CommandBars

 Putting this all together:

Dim pCommandltem As ICommandltem
Set pCommandltem = CommandBars.Find(ArclID.SketchTool Angle)
pCommandltem.Execute

o (Getting a toolbar works in a similar fashion

— Toolbars have GUIDs too, and can be found in the same way

Dim pCommandltem As ICommandltem
Set pCommandltem = CommandBars.Find(ArclD.Editor EditorToolbar)

e However, toolbar properties and methods are on the
|ICommandBar interface (not ICommandltem), so we
Queryinterface to get the right interface:

Dim pCommandBar As ICommandBar
Set pCommandBar = pCommandltem

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 14 — Adding layers to a map

» Adding a geodatabase feature class
o Adding a raster data set

Chapter 14 — Adding layers to a map

Adding layers to maps through the GUI Is something
every user does when they use ArcMap

Equally important to the developer iIs to be able to add
layers using code, as this Is a necessary precondition to
doing something to the layers with the code

This is really a four step process:
1. Create the layer from one of the layer coclasses

2. Get the data set from a storage location that the computer
can access (either locally or somewhere networked)

3. Associate the data set with the layer
4. Add the layer to the map

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 14 — Adding layers to a map

The first step, creating the layer from one of the layer
coclasses, uses straightforward VBA code:

Dim pRLayer as IRasterlLayer
Set pRLayer = New RasterlLayer

The key Is to identify the appropriate type of layer:

Layer

i

Featu reLayer’ RasterLayer ’ GraphicsLayer’ ’

Chapter 14 — Adding layers to a map

 The second step, getting the data set, is a little more
tricky ... partly because ArcGIS is so flexible with data
— Because ArcGIS can work with so many different kinds of
data files, there are lots of variations on this
 To simplify the process, in all cases to get a data set, one
must first get its workspace, which one creates using a
workspace factory:

WorkspaceFactory

Access Raster Shapefile
WorkspaceFactory WorkspaceFactory | | WorkspaceFactory

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 14 — Adding layers to a map

You select the right WorkspaceFactory from the many
coclasses, and use it to create the required workspace

Workspaces are composed of data sets (which is what
we are really after)

There are WorkspaceFactories specific to each type of
data set files we might want to add to our map:

WorkspaceFactory

Access Raster Shapefile
WorkspaceFactory WorkspaceFactory | | WorkspaceFactory -
Davi — EEQOS 472 — UMass Boston

Chapter 14 — Adding layers to a map
ShapeFile Example

WorkspaceFactory ’

|
|
!
|
4

WorkSpace ’—O IFeatureWorkspace

Set pFeatureLayer.FeatureClass = _
pFeatureWorkspace.OpenFeatureClass("Country™)

Application
class

!

MxDocument

L.

Imap Q=

Map

IActiveView O

L.

Layer

Featu reLayer’

]

David Tenenbaum — EEOS 472 — UMass Boston

Adding a geodatabase feature class

Your first exercise will take you through the four step
process using a geodatabase feature class

The first key thing that you need to know, both here and
In all cases really, is the kind of data file in question -
this determines the right kind of WorkspaceFactory

Here we are working with an MS Access database, so we

need an Access\WorkspaceFactory:

Dim pAWFactory As IWorkspaceFactory
Set pAWFactory = New AccessWorkspaceFactory

The IWorkspaceFactory interface has an OpenFromFile
method that is used to open the file:

Dim pFWorkspace As lFeatureWorkspace
Set pFWorkspace = pAWFactory.OpenFromFile(*“thefile.mdb”,0)

Adding a geodatabase feature class

* We now have the Workspace required and we can now
get the feature class with the OpenFeatureClass method
on the IFeatureWorkspace interface of our Workspace:

Dim pFClass As lIFeatureClass
Set pFClass = pFWorkspace.OpenFeatureClass(“Roads’)

o Setting up a feature layer and associating it with the class
IS relatively straightforward:
Dim pFLayer As lFeaturelLayer

Set pFLayer = New FeaturelLayer
Set pFLayer.FeatureClass = pFClass

 Finally, adding it to the Map document is equally
straightforward (see the text for the five lines of code
required)

David Tenenbaum — EEOS 472 — UMass Boston

Adding a raster data set

e Your second exercise involves a similar procedure, only
this time the data set Is raster data rather than features
from within a geodatabase

* The only real wrinkle is switching to use the right
WorkspaceFactory for the particular kind of data ...
but the hope Is that once you have done this for two
different sorts of data, you will be comfortable with
doing it for any sort of data set

« This way, you will have worked with data sets from both
the vector and raster spatial data models, which covers
most of what you are likely to work with in real
applications

Chapter 15 — Setting layer symbology

 Setting layer color
 Setting layer symbols
e Creating a class breaks renderer

Chapter 15 — Setting layer symbology

Interface inheritance

* Recall back in Chapter 10 when we learned of class
Inheritance: Derived classes can take over (or inherit)
properties, methods, and interfaces of the pre-existing
classes, which are referred to as base classes

* In this chapter, we look at a form of inheritance that Is a
subset of the above, called interface inheritance:

— The properties and methods associated with a particular
Interface are inherited, but properties and methods from other
Interfaces on the same class ARE NOT inherited here

SimpleLineSymbol Name of the

ISimpleLineSymbol O ISimpleLineSymbol [: ILineSymbol inherited
m—m Style: esriSimpleLineStyle interface

David Tenenbaum — EEOS 472 — UMass Boston

Setting layer color

e By default, when a layer Is added to a map using the GUI,
It Is a symbolized with a single random color

o This is the default renderer assigned to the layer

e As an alternative, we can write code to make use of
another renderer

— Every feature layer has a
renderer FeatureLayer'— Renderer
— Renderers are composed of T
symbols =
Symbol

— Every symbol has a color
(different kinds of symbols will
have other sorts of characteristics olor

as well)

David Tenenbaum — EEOS 472 — UMass Boston

Setting layer color

e The Symbol abstract class has many subclasses; the
basic ones are:
— The MarkerSymbol class for points
— The LineSymbol class for lines
— The FillISymbol class for polygons

 These, In turn, are abstract classes that each have their
own subclasses (see page 266 of the text)

Symbol

A

MarkerSymbol LineSymbol FillSymbol

David Tenenbaum — EEOS 472 — UMass Boston

Setting layer color

 The usual approach applies here: Symbols and their
Colors are declared with the Dim keyword, created with

the New keyword, and properties are set with the
object.property syntax
e Every Featurelayer has one FeatureRenderer;

FeatureRenderer Is an abstract class with eight subclasses
for the various legend types:

— UniqueValueRenderer — ScaleDependentRenderer
— DotDensityRenderer — ChartRenderer
— SimpleRenderer — BitUniqueValueRenderer

— ClassBreaksRenderer — ProportionalSymbolRenderer

David Tenenbaum — EEOS 472 — UMass Boston

Setting layer symbols

In addition to specifying the characteristics of symbols
yourself, you can also draw upon pre-existing sets of
symbols

ArcGIS symbols are stored in the Style Manager,
grouped by style gallery classes that contain individual
style gallery items

These are designed to be used for common thematic
maps of various types

This 1s as simple as finding the styles you wish to use in
the Manager, and then navigating the associated objects
and classes (known as Enums, from enumerations) to
obtain those symbols for your use

Creating a class breaks renderer

o A particularly useful application of manipulating legends
/ renderers by code Is to create them with particular
ranges of associated attribute values

 This kind of renderer is a ClassBreaksRenderer, and by
working with these through VBA, you can specify the
exact ranges of attribute values associated with
particular symbols

e You might use this approach if you are making many
similar maps, and want to ensure they all have
precisely the same legend (and ranges of values
associated with particular symbols)

Chapter 16 — Using ArcCatalog
objects in ArcMap

o Adding layer files to ArcMap

* Making your own Add Data dialog
box

Chapter 16 — Using ArcCatalog
objects in ArcMap

e The ArcCatalog object model has similar starting points
to that of ArcMap
— There Is an ArcCatalog Application object named Application
— There i1s a GxDocument object named ThisDocument

e One key difference Is the location where customizations
can be stored

— Unlike ArcMap with its options (the project .mxds, base
templates and the normal.mxt template), ArcCatalog has only
one place where customizations are stored, its own
normal.gxt template (this presents some problems in
conveniently distributing ArcCatalog customizations)

 Just as many objects in ArcMap have the Mx prefix in
their name, Gx Is the common prefix for ArcCatalog

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 16 — Using ArcCatalog
objects in ArcMap

ArcMap Obiject APl ass
Model Diagram ?
MxDocument’ ThisDocument
CoClass
)
Normal template (normal.mxt)
M
IActive{/I\i/IeavI\[/) é).: - CoClass Base template
Map document
)
Layer

Abstract

i

Featu reLayer’ RasterLayer ’ GraphicsLayer’ ’
CoClass CoClass CoClass -

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 16 — Using ArcCatalog
objects in ArcMap

ArcCatalog Object
Model Diagram

Application | \@—— Gxbocument| ——— | hiSDocument

? Class Class

GxCatalo GxObject
- glass H peproe Normal template (normal.gxt)

i

GxFile ’
Class

}

GxLayer ’ GxMap ’ GxTextfile ’ GxPrjFile ’
CoClass CoClass CoClass CoClass

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 16 — Using ArcCatalog
objects in ArcMap

* The ArcCatalog Application
IS composed of GxCatalog
objects, which in turn are
composed of GxObjects

A GxObject is any file,
folder, disk connection, or
other object you can click
on in the tree view shown In
the left-hand pane of
ArcCatalog

Several kinds of GxObjects,
shown In the tree view

Application
Class

!

GxDocument
Class

GxCatalog
CoClass

A

GxObject
Abstract

i

GxFile ’
Class

e

§) Catalog
+ :' Ci
+ (i) C:\Documents and Settingsall
+ (i@ D
+ (i D:\ArcGIS 9 Workshops\Data
= (i) D:\Program Files\ArcGIS

—-[21] ArcGlobeData

&» Countries.yr
country,shp
Default_Document, 3dc
Warld Irnage.lyr

+ G wsiearth b

s

ity

il wshearth,pri

T

David Te

nenbaum — EEOS 472 — UMass Boston

Adding layer files to ArcMap

o A layer file (extension .lyr) acts as an intermediate
between a spatial data source and the Map document: It
stores information about symbology, the path to the

data set etc.

— This simplifies adding a layer to a Map with a particular
symbolization; it is all set up already

A GxlLayerisa GxFile, and
both are GxObjects, and as
they are coclasses, either can
be created directly

 To create one from a file,
use GxFile’s path property:

GxObject
Abstract

i

IGxFile Q=

GxFile ’ B—8 rath

éoClass

IGxLayer Q—

GxLayer ’ B Layer

CoClass

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 16 — Using ArcCatalog
objects in ArcMap

* There are five further coclasses in the ArcCatalog object
model diagram that represent dialog boxes

« Each has its uses, but particularly important to us is the
GxDialog, which gives us the capability to make

customized dialog boxes for specifying files to be
opened or saved

GxDialo ProjectedCoordinates GeogaphicCoordinates
gCoCIass SystemDialog SystembDialog

CoClass CoClass

TableDefinitionDialog SpatialReference
Dialog
CoClass

CoClass

Making your own Add Data dialog box

* In many cases, rather than having a known path to the data

we want to add, instead we give the user the chance to
navigate to the correct directory and select the data

source using a dialog box

e The GxDialog is designed just
for this purpose: It allows to
create a file selection dialog
box that we can customize in
various ways (e.g. to allow
specific file types to be selected,
single or multiple files selected,
what the title and buttons say,
what directory it opens in etc.)

GxDialog

IGxDialog O—

IGxDialog : IUnknown

| — AllowhultiSelect: Boolean

—8 BuitonCaption: String
FinalLocation; [GxOiject
InternalCatalog: 1GxCatalog
MName: String

OhjectFilter: 1GxObjectFilter
RememberLocation: Boolean
B— FReplacingObject: Boolean
—@ StartingLocation: “ariant
— Title: Siring

—
—
-
B
—u

-4— DolodalOpen (n parentWindow:
OLE_HAMDLE, cut Selection:
IEnumGxChject): Boolsan

-4— [DobodalSave (in parentyvindow:
OLE_HAMDLE): Boolean

1GxObjectFilterCollection : IUnknown

-4— AddFilter {in Filter: 1GxOhjectFilter, in
defauliFilker: Boolean)
-i— RemoveslFiliers

David Tenenbaum — EEOS 472 — UMass Boston

Making your own Add Data dialog box

* For example, to create a GxDialog titled “Add Data”, that

starts in “Catalog”, with a Button that says “Add”, and
only allows the selection of a single file:

Dim pGxDialog As IGxDiralog
Set pGxDralog = New GxDralog

pGxDiralog.ButtonCaption = “Add” spiango—

pGxDralog.StartingLocation =

“Catalog”

pGxDiralog.Title = “Add Data”
* We can further customize the

GxDialog by restricting the

type of files It can be used to

open using an ObjectFilter

GxDialog

IGxDialog : IUnknown

-

inalLocation; |GxObject
InternalCatalog: 1GxCatalog

Doz
5o
[14]
o
=
=
ba |
7
=)
£
[11]

[x]
8
=
=
g

-4— DolModalOpen (n parentWindow:
OLE_HAMDLE, cut Selection:
IEnumGxChject): Boolsan

-4— [DobodalSave (in parentyvindow:
OLE_HAMDLE): Boolean

1GxObjectFilterCollection : IUnknown

-4— AddFilter {in Filter: 1GxOhjectFilter, in
defauliFilker: Boolean)
-#— RemoveslFiliers

David Tenenbaum — EEOS 472 — UMass Boston

Making your own Add Data dialog box

e There are a wide variety of types |
]] _ IGxObijectFilter 0— GxObject-
of GxODbjectFilter to suit whatever Filter
you need your GxDialog to get /\

» For example to allow our GxDialog
to just open layers:

Dim pLFilter as IGxFilterLayers
Set pLFilter = New GxFilterLayers

e We then set our GxDialog’s
ObjectFilter property
accordingly:

Set pGxDialog.ObjectFilter =
pLF1lter

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 17 — Controlling feature display

« Making definition queries

 Selecting features and setting the
selection color

Chapter 17 — Controlling feature display

« Both definition queries and feature selections are based

on the idea of a query, which you are undoubtedly
familiar with from your previous GIS coursework:

— Given a set of features, can we identify a subset of them that
meets a particular set of criteria

— E.g.: “Which states in the United States have a population of
over twelve million?”” which as a query, would read:

“State population > 12000000
e A query contains a field name, an operator, and a value

« A definition query limits the features displayed to
Include those that meet the criteria

o A feature selection highlights the appropriate features

David Tenenbaum — EEOS 472 — UMass Boston

Making definition queries

 In Exercise 17A, you will use a definition query that
specifies one state in a layer of the United States, and
the user will select which state using a combo box,

containing a pull down list of all the states’ name
attributes

e The resulting DefinitionExpression will look like this:

pStateLayerDef.DefinitionExpression
“State Name = “Arizona’”

 However, we will need to use some string operators to
form the query, since we will not know before the fact
the name of the state in question (as the user will select it
In a combo box)

Making definition queries

* \We can obtain the name of the state the user selected In
the combo box using the combo box’s EditText
property, and we can store that in a string variable:

Dim StrState As String
strState = cboStateNames.EditText

e The tricky part is putting together the full query string,
which can do by concatenating several strings together

— Concatenation simply means attaching multiple strings
together, and it is done in VBA using the & symbol

e We know we want the query string to start with:

“State_Name = “7
— A single quote inside a string becomes a double quote

David Tenenbaum — EEOS 472 — UMass Boston

Making definition queries

* We also want the query string to end with a quote:

 We want to sandwich the state name we stored In
strState in between those two parts, which we can do by
concatenating the three pieces like so:

“State Name = “” & strState & “77”

« Altogether, that makes a single string that we want to use
for the definition expression, which we can declare and
store, and then use:

Dim strQuery As String
strQuery = “State Name = “” & strState & ““7”
pStatelLayerDef._DefinitionExpression = strQuery

David Tenenbaum — EEOS 472 — UMass Boston

Selecting features and
setting the selection color

o Selecting features works In
a similar fashion: A query
IS used to specify what to
select, although it uses
different objects, interfaces
and properties

e The SelectFeatures method
on the IFeatureSelection
Interface is one way to
make a feature selection

e This method requires a
guery filter, a selection
method, and the justOne
argument

IFeatureLayer2

|AttributeTable

IClass
[ConnectionPointContainer
IDataLayer

IDataLayer2

[Dataset

IDisplayAdmin

IFeatureLayerDefinition

IDisplayFilterManager
IDisplayRelationshipClass
IDisplayTable
|IFeatureLayer

IFeatureLayerSelectionEvents
(FeatureLayerSelectionEvents)

IFeatureSelection

IFind
IHotlinkContainer
[HotlinkMacro
IHyperlinkContainer
[Identify

[Identify2

FeatureLayer

IFeatureLayer2 : IlUnknown

m—8 DataSourceType: String

B8 DisplayField: String

B-] FeatureClass: |FeatureClass
B—8 ScaleSymbols: Boolean

B—l Selectable: Boolean

B— ShapeType: esriGeometryType

-4— ExpandRegionForSymbaols (in Display:
|Display, in region: IGeometry)

-— Search (in QueryFilter: [QueryFilter, in
Recycling: Boolean): [FeatureCursor

IFeatureLayerDefinition : IlUnknown

B8 DefinitionExpression: String
B— DefinitionSelectionSet: |SelectionSet
B0 RelationshipClass: IRelationshipClass

-4— CreateSelectionLayer (in LayerName: String,
in useCurrentSelection: Boolean, in
joinTableNames: String, in Expression:
String): IFeatureLayer

TOTTT7 7 YO79997 0

IFeatureLayerSelectionEvents : IlUnknown

-#— FeatureLayerSelectionChanged

I

IFeatureSelection : IlUnknown

-8 BufferDistance: Double

B8 CombinationMethod:
esriSelectionResultEnum

B SelectionColor: IColor

B0 SelectionSet: [SelectionSet

B SelectionSymbol: ISymbol

Bl SetSelectionSymbol: Boolean

177777

-— Add (in Feature: IFeature)

~4— (Clear

-4— SeclectFeatures (in Filter: 1QueryFilter, in
Method: esriSelectionResultEnum, in
justOne: Boolean)

-4— SeclectionChanged

David Tenenbaum — EEOS 472 — UMass Boston

Selecting features and

setting the selection color

o A QueryFilter 1s an object that can be used to build and
store query statements
— The query string is stored in the \WhereClause property:
Dim pFilter As IQueryFilter

Set pFilter = NewQueryFilter
pFilter.WhereClause = “State Name = “Arizona’”

* There are five types of selection methods that can be used
for the second argument of the SelectFeatures method:
— esriSelectionResultNew — Create totally new selection
— esriSelectionResultAdd — Add features to current selection
— esriSelectionResultSubtract — Remove features from current selection
— esriSelectionResultAnd — Select features from current selection
— esriSelectionResultXOR — Reverse status of features satisfying query

David Tenenbaum — EEOS 472 — UMass Boston

Selecting features and
setting the selection color

e The justOne argument of the SelectFeatures method is
a Boolean argument that specifies whether to find:
— The first feature that satisfies the query (when true) OR
— All features that satisfy the query (when false)

« Putting all three arguments together, the code that
would use the SelectFeatures method with a QueryFilter
called pFilter, performing a query where the results are
used in an entirely new selection, and would only look for
the first feature that satisfies the query would be:

pFSLayer.SelectFeatures _
pFilter, esriSelectionResultNew, True

Chapter 18 — Working with selected features

» Using selection sets
 Using cursors

Chapter 18 — Working with selected features

 Now that we know how to select a set of features, we
will next learn how to do something with them

« Selection sets collect selected features as a group
— A selection set is a container for a set of features
— Like all collection objects we can add and remove items

— Unlike other collections we have worked with, you CANNOT
access particular objects in the selection set

— One important property a selection set does have is a Count
poroperty to report the total number of features It contains

e To work with selected features one at a time, you make
a cursor

— This usage of the word cursor is different from indicating the
position of text being edited in Word

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 18 — Working with selected features

o A cursor is like an Enum, with a pointer and method to
move from one object to the next (e.g. in a selection set)

|t can be used to obtain and modify a feature’s spatial
and attribute information

— When it comes to editing features to store (for example) the
results of some analysis you just performed using VBA code that
you wrote, a cursor is used to write results to feature datasets

e Selection sets and cursors

IRow O
are made up of records Teble e o R
— Records refers to both rows in ZF
a table and features in a e P o —
feature class (each of the class IFeature O class

latter Is composed of several
of the former)

David Tenenbaum — EEOS 472 — UMass Boston

Using selection sets

[

IFeatureSelection : IUnknown

o Every feature layer ireaturessiection
has a SelectionSet a= Conaionieod -

E‘SHSHE‘HIGH RESLIHEFI um
£ 2

IFind O—
prO pe rty IHotlinkContainer O— [m—pg SEIECIIGI‘IS‘_-{H‘II:JOI ISymbol
IHotlinkMacro O— | ®=m SetSelectionSymbol” Boolean
- Even |f nOthln |S |HyperlinkCnntainler O— I érldd{ln Feature: IFeature)
. g lldentify O— | T Seietireatures (in Filter- IQueryFilter. in
SeleCted, |t IS Stl“ lidentify2 O— Method: esriSelectionResultEnum, in

1u5t0ne: Boolean)
-4— SelectionChanged

there, just empty

* Whether user-defined (using parts of the GUI like the
Select Features tool or the Selection menu) or set by
code (using a QueryFilter as we saw earlier in this class)
we can get the selection set by getting the SelectionSet

property on the FeaturelLayer’s IFeatureSelection
Interface

David Tenenbaum — EEOS 472 — UMass Boston

Using selection sets

« A feature layer can have multiple selection sets, but can
only display one of them at a time

— The one displayed is switched by setting the SelectionSet
property, and then refreshing the map’s active view

Set pFLayer.SelectionSet = pWestSelectionSet
pMxDoc.ActiveView.Refresh

A Table and a QueryFilter are | "o
both needed In order to create a T —
SelectionSet o class
— This is what the open diamond i ZF
symbol in the diagram to the right | QuervFilter ’ Featureclass
means (that multiple objects are z}

needed to create another)

SpatialFilter

David Tenenbaum — EEOS 472 — UMass Boston

Using cursors

e A cursor can be used to obtain and modify a feature’s
spatial and attribute information
— Itisagroup of records organized in rows, like a table
— Itis created using a query filter and a table
— A FeatureCursor Is a type of cursor for use with features

SelectionSet
class

|
Cursor - S _] Table
class class

i ?

FeatureCursor QueryFilter ’ FeatureClass

Class 4 class

SpatialFilter

David Tenenbaum — EEOS 472 — UMass Boston

Using cursors

The IFeatureClass interface FeatureClass
(which we used to make T s
selection sets) also has three
methods to make a feature
cursor: e S
1. The Insert method lets you add
new features to a feature class S
2. The Update method lets you edit existing features

3. The Search method makes a cursor that contains all features
satisfying a query statement

— This is useful when you want to get information about
features but do not want to make any new features

mn

==
@ o

.
7990|9253

e
atureCount (in QueryFilter: IQueryFilter):

HoH TN

etFeature (in ID: Long): IFeature
Features (in fids: Variant, in Recycling:

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 19 — Making dynamic layouts

* Naming elements
* Manipulating text elements

Chapter 19 — Making dynamic layouts

o All the items found in a map layouts are, within VBA,
objects known as Elements
— The Element class is an abstract class, which forms of the basis

of several types of elements (we used GraphicElements in our
Chapter 12 exercises):

PagelLayout
Class

P Element

o

FrameElement

}

MapFrame ’

MapSurroundFrame ’

GraphicElement

T

TextElement ’

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 19 — Making dynamic layouts

e The split between FrameElement and GraphicElement
IS Important, because they each behave differently:

— FrameElements (like data frames and their associated elements)
update to reflect any changes in the map shown; On the other
hand, GraphicElements do not ... normally they are static

PageLayout | {@—— Element
This linkage between Class *

these coclasses is our l}
indication of their
relationship; the

MapSurroundFrame FrameElement GraphicElement
will update when the

MapFrame updates, [}

for example. \

\ TextElement ’
MapFrame E)MapSurroundFrame’

David Tenenbaum — EEOS 472 — UMass Boston

Naming elements

In this chapter’s exercises,
you will change the text
elements in your layout
based on some of the code
you have developed in
previous chapters

This involves finding the
right elements, and

|Element

IBoundsProperties
IClone

- - - |IElementProperties2
updating their properties P
according to choices the [ElemeniProperties

ersis
user makes |PersistStream

. .. IPropertySupport
The tricky part of this Is TranstormaD

Identifying the elements
you need to change; this is
easy visually, but hard to
do by code

Element

| [Element : IlUnknown

177

Bl Geometry: IGeometry
B—l | ocked: Boolean
B— SelectionTracker: |1SelectionTracker

-4— Activate (in Display: IDisplay)

<= Deactivate

-4— Draw (in Display: IDisplay, in trackCancel:
ITrackCancel)

-4— HitTest (in X: Double, in Y: Double, in
Tolerance: Double). Boolean

-4— QueryBounds (in Display: IDisplay, in
Bounds: IEnvelope)

-4— QueryOutline (in Display: IDisplay, in Outline:
[Polygon)

IElementProperties2 : IlUnknown

Bl AutoTransform: Boolean
B—-B CustomProperty: Variant
B8 Name: String
B ReferenceScale: Double
Bl Type: String

-4— CanRotate: Boolean

TTTTT

[ITransform2D : IUnknown

-4— Move (dx: Double, dy: Double)

-4— MoveVector (v: ILine)

-¢— Rotate (Origin: |IPoint, RotationAngle: Double)
-4— Scale (Origin: IPoint, sx: Double, sy: Double)

-¢— Transform (Direction: esriTransformDirection,

Transformation: ITransformation)

David Tenenbaum — EEOS 472 — UMass Boston

Naming elements

* |ElementProperties2

provides a Name
property

— Once this has been set,
we have an easy way
to find an particular
element within the
graphics container

e We will create

buttons to let us get
and set element
names to make this
convenient for the
user

|Element

IBoundsProperties
IClone

|IElementProperties?

|IElementProperties
|Persist
|PersistStream
IPropertySupport

ITransform2D

Element

IElement : IlUnknown

177

Bl Geometry: IGeometry
B—l | ocked: Boolean
B— SelectionTracker: |1SelectionTracker

-4— Activate (in Display: IDisplay)

<= Deactivate

-4— Draw (in Display: IDisplay, in trackCancel:
ITrackCancel)

-4— HitTest (in X: Double, in Y: Double, in
Tolerance: Double). Boolean

-4— QueryBounds (in Display: IDisplay, in
Bounds: IEnvelope)

-4— QueryOutline (in Display: IDisplay, in Outline:
[Polygon)

IElementProperties2 : IlUnknown

B—-B CustomProperty: Variant
B Name: String
B ReferenceScale: Double

Bl AutoTransform: Boolean

Bl Type: String

-4— CanRotate: Boolean

TTTTT

ITransform2D : IUnknown

-4— Move (dx: Double, dy: Double)

-4— MoveVector (v: ILine)

-¢— Rotate (Origin: |IPoint, RotationAngle: Double)

-4— Scale (Origin: IPoint, sx: Double, sy: Double)

-¢— Transform (Direction: esriTransformDirection,
Transformation: ITransformation)

David Tenenbaum — EEOS 472 — UMass Boston

Manipulating text elements

e Once we have got the functionality set up to get and set
our elements’ names, we will make use of it

o We will use the Name property to find particular
elements by checking through each of the elements that is
present in the graphics container to find the right one
(based on the name matching)

* We begin by getting the graphics container we need,

letting VBA do an automatic Querylnterface for us:
Dim pMxDoc As IMxDocument

Set pMxDoc = ThisDocument

Dim pGraphics As IGraphicsContainer

Set pGraphics = pMxDoc.PagelLayout

Manipulating text elements

* We can now get elements from the graphics container

sequentially using its Next method:

— The Next method returns the |Element interface of the element
It gets, but we can use an automatic Querylnterface to get the
Interface we really want (IElementProperties2, that has the
Name property on it):

Dim pElementProp As IElementProperties?2

Set pElementProp = pGraphics.Next

e Each time we get the next element, we can then check its
name against what we are looking for using an If Then

(or Case) statement:
IT pElementProp.Name = “ToxicMapTitle” Then

* Once we find the right one, we can set its Text property

David Tenenbaum — EEOS 472 — UMass Boston

Chapter 20 — Editing tables

e Adding fields
o Getting and setting values

Chapter 20 — Editing tables

» Recall that the features we work with in ArcGIS are
actually stored as records in a table:

Table PR IRow O~ Row
class *x

?

FeatureClass | [@ Feature
class IFeature Q= class

class

*

o Tables have a second dimension as well: Columns in the
table represent categories of information. These are
actually stored as fields in a table

e The intersection of a record and a field is a cell; this
holds a particular piece of information known as a value

David Tenenbaum — EEOS 472 — UMass Boston

Adding fields

o A feature class has a Fields object, which is a collection
comprised of all of its Field objects:

IMxDocument O— MxDocument H— Focusmap: IMap
IDocument Q=
?-k

',

FeatureLayer ’.—EI FeatureClass: IFeatureClass

B] Layer:ILayer
IMap O Map ’ Y y

IFeatureLayer Q=

FeatureClass Fields
IFeatureClass = ’ IFields O ’

IField O— Feld ’

David Tenenbaum — EEOS 472 — UMass Boston

Adding fields

e To add a field to a feature class, you first have to make a

new field from the Field coclass in the usual fashion:
Dim pField As IField
Set pField = New Field

e Once you have created the field, you must set its
properties to make it suitable for the kind of information
you want to store within it

— This needs to be done before it gets added to table; once added
to a table you can no longer change the Field’s properties
* The Field coclass has two nearly identical interfaces,
with one key difference between them: One Is solely
designed for getting properties, and the other is for
setting them

David Tenenbaum — EEOS 472 — UMass Boston

Adding fields

e The IField interface has
only left-hand barbells, so
It can only be used to get a
Field’s properties, but not
set them

* The IFieldEdit interface
has only right-hand
barbells, so it can only be
used to set a Field’s
properties, but not get them

e BUT ... IFieldEdit
Inherits from IField, so ...
(What does this mean?)

IField O—

i
Ll
=)

IFie

lUnknown

IClone O—

=
3
T i
- =
[T=]

'3'9-'33]
= E [
Egmm

FEOMoODoE (2
Y = R N T
=T a3

TTHITTIITTT

-g— CheckValus {in Valus: Variant) . Boolean

IFieldEdit O—F

IFieldEdit : IField

=gl LliasMame: Siring

=il DefaultValue: Variant

==f] Domain: IDomain

=l DomainFixed: Boolean

—l Editable: Bocolean

=] CeomeiryDef. IGeometryDef
=l |stullable: Boolean

—l L=ngih: Long

—l Mams: String

=8l Precizion : Long
=il Required: Boolean
-l Scale: L

—8l Typ FigldTyp

IModellnfo ©O—

IModelinfo : IUnknown

Bl ModslName: String

David Tenenbaum — EEOS 472 — UMass Boston

Adding fields

e Once you have made a field, use the IFieldEdit interface
to set its properties, either by having declared a variable
to that interface initially, or by switching to it now:

Dim pFieldField As IFieldEdit
Set pFieldEdit = pField

e The two properties of a Field that you will always need
to set are its name (which Is a string) and the data type:
pFieldField.Name = “Population”
pFieldEdit.Type = esriFieldTypelnteger

e There are a number of field types, and you can look these
up in the help to see which of them you would want to use
for a particular kind of information

Getting and setting values

« This time, we will make a feature cursor using the Update
method, and we do not need to make a query filter
because we want to get all the records (rather than a
subset of them):

Dim pFCursor As IFeatureCursor
Set pFCursor = pFClass.Update(Nothing, False)

* We can now move through the records one at a time with

the feature cursor’s NextFeature method:

Dim pFeature As lFeature
Set pFeature = pfCursor.NextFeature

« The NextFeature method can be repeated until the pointer
IS pointing at the desired feature

Getting and setting values

* Once you have the right feature, you can use the VValue
property on the IRowBuffer interface to get or set the
value for a field denoted by an index value, e.g.
pFeature.Value(3) = 60000

will set the value in the 4™ field (remember, the first has
Index = 0) for the record of interest to 60000

* Once this is done, you have changed that value in
memory; to make this a permanent change recorded In
the file corresponding to the table, use the feature cursor’s
UpdateFeature method:

pFCursor .UpdateFeature pFeature

e Use a Do Until loop to change all features in the cursor

David Tenenbaum — EEOS 472 — UMass Boston

