
David Tenenbaum – EEOS 472 – UMass Boston

Displaying and selecting features

Chapter 17 – Controlling feature display
– pp. 315-338
– Exercises 17A & 17B

Chapter 18 – Working with selected features
– pp. 339-357
– Exercises 18A & 18B

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 17 – Controlling feature display

• Making definition queries
• Selecting features and setting the

selection color

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 17 – Controlling feature display

• We are now ready to start working directly with some
subsets of spatial datasets

• In doing so, we are going to identify part of a set of
features, and use that subset to perform a task
WITHOUT changing the underlying data files
– The ArcGIS data model is designed to work with spatial data

without changing the underlying files A lot of the ideas in
the next three chapters are about working with subsets of
features in a temporary fashion (e.g. so we can do something
with 5 out of 50 polygons WITHOUT changing the polygon
shapefile where they are stored)

• Definition queries and feature selections are two ways to
do this

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 17 – Controlling feature display

• Both definition queries and feature selections are based
on the idea of a query, which you are undoubtedly
familiar with from your previous GIS coursework:
– Given a set of features, can we identify a subset of them that

meets a particular set of criteria
– E.g.: “Which states in the United States have a population of

over twelve million?” which as a query, would read:
“State_population > 12000000”

• A query contains a field name, an operator, and a value
• A definition query limits the features displayed to

include those that meet the criteria
• A feature selection highlights the appropriate features

David Tenenbaum – EEOS 472 – UMass Boston

Making definition queries

• Given a feature layer in a
map, we can set its
definition query by
setting the
DefinitionExpression
property on the
IFeatureLayerDefinition
interface

• However, first we need to
have access to the right
layer object to do this …
and this can be tricky with
an MxDocument which
contains multiple maps

David Tenenbaum – EEOS 472 – UMass Boston

Making definition queries

• It is possible for an MxDocument to contain
multiple maps, which we can get at through
the IMaps interface, which provides access
to the collection of Map objects

• This works like the Enums we worked with
last time; it’s a list of objects where we can
specify one by its position, like so:
Dim pMaps As IMaps
Set pMaps = pMxDoc.Maps
Dim pWorldMap as IMap
Set pWorldMap = pMaps.Item(0)
Dim pUSAMap as IMap

Set pUSAMap = pMaps.Item(1)

MxDocument
CoClass

Application
class

Map
CoClass

*

Position 0

Position 1

David Tenenbaum – EEOS 472 – UMass Boston

Making definition queries
• Once we have our appropriate Map, we can

easily set up the layer we need:
Dim pStatesLayer as ILayer

Set pStatesLayer = pUSAMap.Layer(1)

Position 0
Position 1

• We can use the IFeatureLayerDefinition
interface to set the definition query for
the layer:
Dim pStatesLayerDef as IFeatureLayerDefinition
Set pStatesLayerDef = pStatesLayer
pStatesLayerDef.DefinitionExpression _

“State_Population > 12000000”

• The query statement is double quoted because it is a string
(special rules exist to handle strings within strings)

David Tenenbaum – EEOS 472 – UMass Boston

Making definition queries

• In Exercise 17A, you will use a definition query that
specifies one state in a layer of the United States, and
the user will select which state using a combo box,
containing a pull down list of all the states’ name
attributes

• The resulting DefinitionExpression will look like this:
pStateLayerDef.DefinitionExpression _

“State_Name = ‘Arizona’”

• However, we will need to use some string operators to
form the query, since we will not know before the fact
the name of the state in question (as the user will select it
in a combo box)

David Tenenbaum – EEOS 472 – UMass Boston

Making definition queries

• We can obtain the name of the state the user selected in
the combo box using the combo box’s EditText
property, and we can store that in a string variable:
Dim StrState As String
strState = cboStateNames.EditText

• The tricky part is putting together the full query string,
which can do by concatenating several strings together
– Concatenation simply means attaching multiple strings

together, and it is done in VBA using the & symbol

• We know we want the query string to start with:
“State_Name = ‘”

– A single quote inside a string becomes a double quote

David Tenenbaum – EEOS 472 – UMass Boston

Making definition queries

• We also want the query string to end with a quote:
“‘”

• We want to sandwich the state name we stored in
strState in between those two parts, which we can do by
concatenating the three pieces like so:
“State_Name = ‘” & strState & “’”

• Altogether, that makes a single string that we want to use
for the definition expression, which we can declare and
store, and then use:
Dim strQuery As String

strQuery = “State_Name = ‘” & strState & “’”

pStateLayerDef.DefinitionExpression = strQuery

David Tenenbaum – EEOS 472 – UMass Boston

Selecting features and
setting the selection color

• Selecting features works in
a similar fashion: A query
is used to specify what to
select, although it uses
different objects, interfaces
and properties

• The SelectFeatures method
on the IFeatureSelection
interface is one way to
make a feature selection

• This method requires a
query filter, a selection
method, and the justOne
argument

David Tenenbaum – EEOS 472 – UMass Boston

Selecting features and
setting the selection color

• A QueryFilter is an object that can be used to build and
store query statements
– The query string is stored in the WhereClause property:
Dim pFilter As IQueryFilter
Set pFilter = NewQueryFilter
pFilter.WhereClause = “State_Name = ‘Arizona’”

• There are five types of selection methods that can be used
for the second argument of the SelectFeatures method:
– esriSelectionResultNew – Create totally new selection
– esriSelectionResultAdd – Add features to current selection
– esriSelectionResultSubtract – Remove features from current selection
– esriSelectionResultAnd – Select features from current selection
– esriSelectionResultXOR – Reverse status of features satisfying query

David Tenenbaum – EEOS 472 – UMass Boston

Selecting features and
setting the selection color

• The justOne argument of the SelectFeatures method is
a Boolean argument that specifies whether to find:
– The first feature that satisfies the query (when true) OR
– All features that satisfy the query (when false)

• Putting all three arguments together, the code that
would use the SelectFeatures method with a QueryFilter
called pFilter, performing a query where the results are
used in an entirely new selection, and would only look for
the first feature that satisfies the query would be:
pFSLayer.SelectFeatures _

pFilter, esriSelectionResultNew, True

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 18 – Working with selected features

• Using selection sets
• Using cursors

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 18 – Working with selected features

• Now that we know how to select a set of features, we
will next learn how to do something with them

• Selection sets collect selected features as a group
– A selection set is a container for a set of features
– Like all collection objects we can add and remove items
– Unlike other collections we have worked with, you CANNOT

access particular objects in the selection set
– One important property a selection set does have is a Count

property to report the total number of features it contains

• To work with selected features one at a time, you make
a cursor
– This usage of the word cursor is different from indicating the

position of text being edited in Word

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 18 – Working with selected features

• A cursor is like an Enum, with a pointer and method to
move from one object to the next (e.g. in a selection set)

• It can be used to obtain and modify a feature’s spatial
and attribute information
– When it comes to editing features to store (for example) the

results of some analysis you just performed using VBA code that
you wrote, a cursor is used to write results to feature datasets

Table
class *

Feature
class

*

IRow

IFeature

Row
class

FeatureClass
class

• Selection sets and cursors
are made up of records
– Records refers to both rows in

a table and features in a
feature class (each of the
latter is composed of several
of the former)

David Tenenbaum – EEOS 472 – UMass Boston

Using selection sets

• Every feature layer
has a SelectionSet
property
– Even if nothing is

selected; it is still
there, just empty

• Whether user-defined (using parts of the GUI like the
Select Features tool or the Selection menu) or set by
code (using a QueryFilter as we saw earlier in this class)
we can get the selection set by getting the SelectionSet
property on the FeatureLayer’s IFeatureSelection
interface

David Tenenbaum – EEOS 472 – UMass Boston

Using selection sets

• We can get the layer of interest using the usual approach
(see below), letting VBA switch automatically to the
IFeatureSelection interface, and then declare a variable
to ISelectionSet and set it equal to the feature layer’s
SelectionSet property:
Dim pMxDoc As IMxDocument
Set pMxDoc = ThisDocument
Dim pMap As IMap
Set pMap = pMxDoc.FocusMap
Dim pFLayer as IFeatureSelection
Set pFLayer = pMap.Layer(0)
Dim pWestSelectionSet As ISelectionSet

Set pWestSelectionSet = pFLayer.SelectionSet

David Tenenbaum – EEOS 472 – UMass Boston

Using selection sets
• A feature layer can have multiple selection sets, but can

only display one of them at a time
– The one displayed is switched by setting the SelectionSet

property, and then refreshing the map’s active view

Set pFLayer.SelectionSet = pWestSelectionSet

pMxDoc.ActiveView.Refresh
SelectionSet

class

QueryFilter
CoClass

SpatialFilter
CoClass

Table
class

FeatureClass
class

• A Table and a QueryFilter are
both needed in order to create a
SelectionSet
– This is what the open diamond

symbol in the diagram to the right
means (that multiple objects are
needed to create another)

David Tenenbaum – EEOS 472 – UMass Boston

Using selection sets

• When you have the required objects, you can make a
selection set by running the Select method on
IFeatureClass:

FeatureClass
Class

IFeatureClass

QueryFilter
CoClass

Featurelayer
CoClass

IFeatureLayer FeatureClass: IFeatureClass

Select
SelectionSet

class
ISelectionSet

IQueryFilter

• The Select method takes four arguments, and returns
the ISelectionSet interface of a selection set

David Tenenbaum – EEOS 472 – UMass Boston

Using selection sets
• The four arguments the Select

method requires are:
1. A query filter
2. A selection type, which can be:

• esriSelectionTypeIDSet – ID
numbers of the feature are
written to a database table

• esriSelectionTypeSnapshot – ID numbers of the features
are held in computer memory instead of being written

• esriSelectionTypeHybrid – ArcGIS automatically
decides which to use based on the size of the selection set

David Tenenbaum – EEOS 472 – UMass Boston

Using selection sets
• The four arguments the Select

method requires are (cont.):
3. A selection option, which can be:

• esriSelectionOptionNormal –
all features that meet the
specified criteria

• esriSelectionOptionOnlyOne
– only the first feature that meets the specified criteria

• esriSelectionOptionEmpty – An empty selection is
created (and it is unclear when you would want this ?!)

4. A workspace for saving the table created by the 2nd argument
• The value Nothing puts it in the same place as the feature

class; the argument is required even when it seems
unnecessary (storing results in memory)

David Tenenbaum – EEOS 472 – UMass Boston

Using cursors
• A cursor can be used to obtain and modify a feature’s

spatial and attribute information
– It is a group of records organized in rows, like a table
– It is created using a query filter and a table
– A FeatureCursor is a type of cursor for use with features

FeatureClass
class

SelectionSet
class

Table
class

QueryFilter
CoClass

SpatialFilter
CoClass

Cursor
class

FeatureCursor
Class

David Tenenbaum – EEOS 472 – UMass Boston

Using cursors

• The IFeatureClass interface
(which we used to make
selection sets) also has three
methods to make a feature
cursor:
1. The Insert method lets you add

new features to a feature class
2. The Update method lets you edit existing features
3. The Search method makes a cursor that contains all features

satisfying a query statement
– This is useful when you want to get information about

features but do not want to make any new features

David Tenenbaum – EEOS 472 – UMass Boston

Using cursors
• Provided you have a feature class and a query filter, you

can create a search cursor with two lines of code:
Dim pFCursor as IFeatureCursor
Set pFCursor = pStateFClass.Search(pFilter, True)

• To move through the features in a cursor, use the
NextFeature method, which simply increments through
the cursor one feature at a time
– Initially, think of the cursor having a pointer that points to a

(hypothetical) spot before the first feature (i.e. if the first
feature is the 0th feature, it begins by pointing to the -1th feature),
so the first time you run the NextFeature method, it moves to
the first feature:
Dim pFeature as IFeature

Set pFeature = pFCursor.NextFeature

David Tenenbaum – EEOS 472 – UMass Boston

Using cursors
• The NextFeature method returns a feature’s IFeature

interface, giving access to the its spatial properties
• Included amongst these is the Extent property, which

returns a feature’s Envelope (a.k.a. its minimum bounding
rectangle)

• In Exercise 17B, we will be working with polygon
features, and zooming to their extents, so it will be
useful to be able to obtain a polygon’s Envelope like so:
Dim pEnvelope As IEnvelope
Set pEnvelope = pFeature.Extent

• We can use this to set the zoom of a Map’s ActiveView:
pMapsActiveView as IActiveView
Set pMapsActiveView = pMap
pMapsActiveVoew.Extent = pEnvelope

David Tenenbaum – EEOS 472 – UMass Boston

Next Topic:

Working with layouts
and editing data

