
David Tenenbaum – EEOS 472 – UMass Boston

Using existing commands and adding layers

Chapter 13 – Executing commands
– pp. 227-238
– Exercise 13

Chapter 14 – Adding layers to a map
– pp. 239-261
– Exercises 14A & 14B

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 13 – Executing Commands

• Using CommandItems and
CommandBars

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 13 – Executing Commands

• As you have seen throughout in our exploration of
ArcGIS VBA, modularity and the reusability of
functionality and code is a key concern

• If at all possible, we want to avoid reinventing the wheel:
– If someone has already developed the capability to perform a

particular function, the last thing we want to do is replicate
their work; we want to be able to make use of it

• This is equally true of ArcGIS’ existing commands and
the functions they perform
– We do not get to see the code that runs behind them (they are

not written in VBA; using COM they were developed in C++)
– We can still call them, so we can include them in our code

David Tenenbaum – EEOS 472 – UMass Boston

Using CommandItems and CommandBars

• Toolbars are composed of commands, whether they
contain tools, buttons or menu choices
– They belong to the CommandBar class
– From the notation below, you can see a CommandBar is made

up of multiple CommandItems (commands)

CommandBars
Class

MxDocument
CoClass

CommandBar
Class

ICommandBar
ICommandItem

*

IDocument

ICommandBars

CommandItem
Class

ICommandItem *
Execute

• Commands have an interface
called ICommandItem, which
includes an Execute method,
which is used to make the
command run

David Tenenbaum – EEOS 472 – UMass Boston

Using CommandItems and CommandBars

• The CommandBars class (note the ‘s’ at the end) is a
collection of all the CommandBar objects available
– Note the same symbology here, showing the ‘composed of

multiple objects relationship’
• The find request on the

ICommandBars interface takes an
identifier as its argument
– COM classes have a GUID, which

stands for globally unique identifier
– To find a CommandItem, you need

its GUID … but where to get this?

CommandBars
Class

MxDocument
CoClass

CommandBar
Class

ICommandBar
ICommandItem

*

IDocument

ICommandBars

CommandItem
Class

ICommandItem *
Execute

Find(in Identifier):
ICommandItem

David Tenenbaum – EEOS 472 – UMass Boston

Using CommandItems and CommandBars

• You can look GUIDs up in the Developer Help in the topic
ArcMap: Names and IDs of commands and commandbars:

David Tenenbaum – EEOS 472 – UMass Boston

Using CommandItems and CommandBars

• GUIDs are 32-character
hexidecimal strings, and
as such are inconvenient
to copy and paste into
code

• Instead, we can use
procedures built into
the ArcID code module
of the normal.mxt project
to fetch them

• These make it easy to get
a GUID by getting the
appropriately named
property of ArcID ArcID.SketchTool_Angle

David Tenenbaum – EEOS 472 – UMass Boston

Using CommandItems and CommandBars

• Putting this all together:
Dim pCommandItem As ICommandItem

Set pCommandItem = CommandBars.Find(ArcID.SketchTool_Angle)

pCommandItem.Execute

• Getting a toolbar works in a similar fashion
– Toolbars have GUIDs too, and can be found in the same way
Dim pCommandItem As ICommandItem

Set pCommandItem = CommandBars.Find(ArcID.Editor_EditorToolbar)

• However, toolbar properties and methods are on the
ICommandBar interface (not ICommandItem), so we
QueryInterface to get the right interface:
Dim pCommandBar As ICommandBar

Set pCommandBar = pCommandItem

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 14 – Adding layers to a map

• Adding a geodatabase feature class
• Adding a raster data set

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 14 – Adding layers to a map

• Adding layers to maps through the GUI is something
every user does when they use ArcMap

• Equally important to the developer is to be able to add
layers using code, as this is a necessary precondition to
doing something to the layers with the code

• This is really a four step process:
1. Create the layer from one of the layer coclasses
2. Get the data set from a storage location that the computer

can access (either locally or somewhere networked)
3. Associate the data set with the layer
4. Add the layer to the map

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 14 – Adding layers to a map

• The first step, creating the layer from one of the layer
coclasses, uses straightforward VBA code:
Dim pRLayer as IRasterLayer

Set pRLayer = New RasterLayer

• The key is to identify the appropriate type of layer:

Layer
Abstract

FeatureLayer
CoClass

RasterLayer
CoClass

GraphicsLayer
CoClass …

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 14 – Adding layers to a map

• The second step, getting the data set, is a little more
tricky … partly because ArcGIS is so flexible with data

– Because ArcGIS can work with so many different kinds of
data files, there are lots of variations on this

• To simplify the process, in all cases to get a data set, one
must first get its workspace, which one creates using a
workspace factory:

…

WorkspaceFactory
Abstract

Access
WorkspaceFactory

CoClass

Raster
WorkspaceFactory

CoClass

Shapefile
WorkspaceFactory

CoClass

David Tenenbaum – EEOS 472 – UMass Boston

Chapter 14 – Adding layers to a map

• You select the right WorkspaceFactory from the many
coclasses, and use it to create the required workspace

• Workspaces are composed of data sets (which is what
we are really after)

• There are WorkspaceFactories specific to each type of
data set files we might want to add to our map:

…

WorkspaceFactory
Abstract

Access
WorkspaceFactory

CoClass

Raster
WorkspaceFactory

CoClass

Shapefile
WorkspaceFactory

CoClass

David Tenenbaum – EEOS 472 – UMass Boston

MxDocument
CoClass

Application
class

Map
CoClass

Imap
IActiveView

*

WorkspaceFactory
CoClass

WorkSpace
CoClass

Layer
Abstract

*

FeatureLayer
CoClass

IFeatureWorkspace

Set pFeatureLayer.FeatureClass = _
pFeatureWorkspace.OpenFeatureClass("Country")

Chapter 14 – Adding layers to a map
ShapeFile Example

David Tenenbaum – EEOS 472 – UMass Boston

Adding a geodatabase feature class

• Your first exercise will take you through the four step
process using a geodatabase feature class

• The first key thing that you need to know, both here and
in all cases really, is the kind of data file in question
this determines the right kind of WorkspaceFactory

• Here we are working with an MS Access database, so we
need an AccessWorkspaceFactory:
Dim pAWFactory As IWorkspaceFactory

Set pAWFactory = New AccessWorkspaceFactory

• The IWorkspaceFactory interface has an OpenFromFile
method that is used to open the file:
Dim pFWorkspace As IFeatureWorkspace

Set pFWorkspace = pAWFactory.OpenFromFile(“thefile.mdb”,0)

David Tenenbaum – EEOS 472 – UMass Boston

Adding a geodatabase feature class

• We now have the Workspace required and we can now
get the feature class with the OpenFeatureClass method
on the IFeatureWorkspace interface of our Workspace:
Dim pFClass As IFeatureClass

Set pFClass = pFWorkspace.OpenFeatureClass(“Roads”)

• Setting up a feature layer and associating it with the class
is relatively straightforward:
Dim pFLayer As IFeatureLayer

Set pFLayer = New FeatureLayer
Set pFLayer.FeatureClass = pFClass

• Finally, adding it to the Map document is equally
straightforward (see the text for the five lines of code
required)

David Tenenbaum – EEOS 472 – UMass Boston

Adding a raster data set

• Your second exercise involves a similar procedure, only
this time the data set is raster data rather than features
from within a geodatabase

• The only real wrinkle is switching to use the right
WorkspaceFactory for the particular kind of data …
but the hope is that once you have done this for two
different sorts of data, you will be comfortable with
doing it for any sort of data set

• This way, you will have worked with data sets from both
the vector and raster spatial data models, which covers
most of what you are likely to work with in real
applications

David Tenenbaum – EEOS 472 – UMass Boston

Next Topic:

Map symbology and ArcCatalog

