

<u>G</u>eographic <u>A</u>utomata <u>S</u>ystems

Paul M. Torrens and Itzhak Benenson

International Journal of Geographical Information Science Vol. 19, No. 4, April 2005, 385–412

Seth Sheldon Raster GIS

Introduction

- Automaton
 - A discrete processing unit, characterized by internal states
- Purpose
 - To develop a new framework for characterizing dynamic systems from existing models
- Methods
 - Extensive literature survey
 - Demonstration of method in existing spatial simulation software

<u>Cellular Automata and Multi-Agent</u> <u>Systems as automata systems</u>

- Cellular Automata (CA)
 - Defined by
 - State (S)
 - Transition Rule (T)
 - Neighborhood (N)
 - Fixed location

Multi-Agent Systems (MAS)

- Defined by
 - S and T, too
- Gifted with **mobility**
- Social Sciences

Figure 1. (a) Grid and network neighborhoods. (b) Voronoi neighborhood (gray), based on property coverage.

Seth Sheldon Raster GIS

A rationale for *Geographic* automata systems

CA and MAS

- Insufficient in characterizing the moving world
- The models "misbehave"
- Cellular Automata
 - Only diffuse information
 - Not free to move
- Multi-Agent Systems
 - Often over-general
 - Underestimate importance of spatial behavior

- Direct
 - Indirect
- Internal States for Animation:

Figure 2. Direct geo-referencing. (a) Buildings are represented by means of foundation contours; road segments by means of road boundaries, (b) Buildings are represented by means of foundation centroids; road segments by means of a road segment centreline, (c) Building centroids and roads are represented by cells.

Figure 3. Indirect geo-referencing by pointing. (a) Locating households by pointing to the houses they occupy, (b) Locating a landowner by pointing to its properties.

Seth Sheldon Raster GIS

GAS as a dynamic extension of GIS

Vector

- Geographic automata correspond to GIS features
- Location for fixed automata
- Relationships easy to evaluate
- Raster
 - Parallel to Cellular Automata
 - (Probably intuitive)

Figure 4. Neighbor relationships for indirectly located geographic automata. Two households are neighbors if they are located in the same property or in neighboring properties.

From GAS to Dynamic Spatial System

Managing Time

- Synchronous
- Asynchronous

c Spatial System

Self-organization

- "It is very well known that if system rules are non-linear and the system is open, then the emergence and self-maintenance of entities at above-automata levels become feasible."
- Internal States (T_S, M_L, R_N)

Implementing the GAS framework in an urban context

Schelling model (1969)

(a)

in a house 0.75 to 1.00 0.50 to 0.75 0.25 to 0.50 0.00 to 0.25

Fraction of 'B'-agents

(b)

Figure 6. Visual output of the Schelling model, implemented in (a) abstract and (b) realworld spaces.

Conclusions

From GIS to GAS

 $Geographic \ system \rightarrow Priority \ of \ location \ information \ and \ spatial \ relations \ between$ $elements \rightarrow Collective \ dynamics \ of \ geographic \ automata \ in \ space \rightarrow GAS$

Adapting existing CA and MA to GAS

Source	Form of geographic automata	Characterization of states	Location of objects		
			Fixed	Non- fixed	Neighborhood rule(s)
(Chapin and Weiss 1962, 1965, 1968, Donnelly <i>et al.</i> 1964)	Identical square land cells	Discrete ordinal variable denoting fraction of urban land-use	Rectangular grid	_	3×3 Moore neighborhood
(Engelen <i>et al.</i> 1995; White and Engelen 1993, 1994, 1997, White <i>et al.</i> 1997)	Identical square land cells	Nominal variable representing four land-uses: vacant, housing, industry, commerce.	Rectangular grid	-	Cells at a distance less than 7 cell-units

April 8, 2009

Thanks!