Project:

•The final project will **simulate a real-world setting** by establishing a **GIS consulting firm**.

•The **CEO** of the firm is the **instructor**, who will be **responsible for helping** the project teams **complete their work** in a **timely and professional** manner.

•The CEO will also **review team performance** and the **quality of their output**.

Project, Continued:

- •Students may conduct the project in a team consisting of no more than 3 members.
- •Each team will have an **elected team leader**. This team leader is **responsible for communications** between the CEO and individual team members. In other words, the team leader is the **'point person'** for **project management**.

Project, Continued :

•The classroom time allocated for **lab sessions** will provide **a common time** for project teams to **meet each week**.

•During certain phases of the project, additional team meetings will need to be scheduled.

•From the **9th week**, each team or individual will give a **5-to-10 minute report** on that week's **progress** either to the entire class or to the instructor.

Project, Continued :

•Team members will **take turns** to **presenting** your project progress each week.

•This 'staff meeting' will allow everyone to follow the progress of the group as a whole, and should eliminate duplication of effort during the data collection phase of the project.

•All members should feel free to offer comments and suggestions to other teams.

Date	Торіс	Background Material	Lab / Project Work
PROJECTS USING ENVIRONMENTAL MODELING WITH RASTER GIS			
03/25/09	Group Formation and Proposal Creation	Project Outline	 Preliminary Project Work
04/01/09	Project Design and Document Preparation	Project Implementation	•Progress Report 1, Discussion, and Collaboration
04/08/09	Formulation and Implementation I	 Graduate Reading Assignments 	 Graduate Presentations
04/15/09	Formulation and Implementation II	N/A	 Progress Report 2, Discussion, and Collaboration
04/22/09	Verification and Validation	N/A	 Progress Report 3, Discussion, and Collaboration
04/29/09	Document and Presentation Preparation I	N/A	 Progress Report 4, Discussion, and Collaboration
05/06/09	Document and Presentation Preparation II	N/A	 Progress Report 5, Discussion, and Collaboration
05/13/09	Project Presentations	N/A	Project Presentations

Modeling Riverine Monthly Carbon Flux from the Neponset River Watershed to the Ocean

Passage of dissolved organic carbon through the landscape (Roulet & Moore, 2006, Nature)

Schlesinger, W.H. 1997. <u>Biogeochemistry: An Analysis of Global Change</u>. Harcourt, Brace and Co., USA: p.359.

- Living tissue is **primarily composed of carbon**, so estimates of the disposition of carbon globally (like NPP) give us a good sense of the extent to which ecosystems are thriving or struggling
- Carbon is **abundantly available** in the **atmosphere** as two gaseous species, CO₂ and CH₄
- Carbon is withdrawn from the atmosphere and added to organic biomass through **photosynthesis**, and vice-versa occurs through the process of **respiration**
- Over the past billions of years, the concentration of atmospheric CO₂ has diminished as its removal from the atmosphere has exceeded its addition, demonstrating organisms' ability to change the planet

Units are Pg (10¹⁵) rather than Tg (10¹²)

Figure 11.1 The present-day global carbon cycle. All pools are expressed in units of 10^{15} g C and all annual fluxes in units of 10^{15} g C/yr, averaged for the 1980s. Most of the values are from Schimel et al. (1995); others are derived in the text.

Schlesinger, W.H. 1997. <u>Biogeochemistry: An Analysis of Global Change</u>. Harcourt, Brace and Co., USA: p.359.

~15% of the atmospheric pool is taken by terrestrial organisms

Units are Pg (10¹⁵) rather than Tg (10¹²)

Figure 11.1 The present-day global carbon cycle. All pools are expressed in units of 10^{15} g C and all annual fluxes in units of 10^{15} g C/yr, averaged for the 1980s. Most of the values are from Schimel et al. (1995); others are derived in the text.

Schlesinger, W.H. 1997. <u>Biogeochemistry: An Analysis of Global Change</u>. Harcourt, Brace and Co., USA: p.359.

Passage of dissolved organic carbon through the landscape (Roulet & Moore, 2006, Nature)

David Tenenbaum - EEOS 465 / 627 - UMass Boston

Carbon Cycle of Terrestrial Ecosystems

- To understand what is happening in ecosystems, we can track the **movement of carbon**, from the point of view of a few key processes and concepts:
- 1. Photosynthesis
- 2. Respiration
- 3. Net Primary Production
- 4. Heterotrophic Respiration
- 5. Net Ecosystem Production

• Modeling these processes is going to require us to **combine our understanding** of how the abundance of **energy, water, and nutrients** all are factors here

1. Photosynthesis

 $CO_2 + H_2O \xrightarrow{\text{chloroplasts}} CH_2O + O_2$

- This actually happens in **two** steps
- First, the **chloroplasts absorb the light energy** and break the water into molecular oxygen, electrons and protons:

$$2H_2O \rightarrow 4H^+ + 4e^- + O^2 + Energy \longrightarrow ATP$$

NADPH

• Later, these products are used in further reactions to produce carbohydrate in **gross primary production**:

$$\frac{\text{ATP}}{\text{NADPH}} \xrightarrow[CO_2]{\text{RUBP}} C_6 H_{12} O_6$$

1. Photosynthesis

- There are several **factors** that influence the **rate of photosynthesis**:
- 1. CO_2 concentration in the atmosphere
- 2. H_2O availability in the soil
- 3. Stomatal aperture
- 4. Nutrient availability (as N, P and others are essential components of the enzymes required)
- 5. Amount of light absorbed by the leaves
- We can take [CO₂] as reasonably constant, and stomatal aperture as a complex, biologicallymitigated response, but the other factors depend on resources being available and used efficiently

2. Respiration

- **Respiration** is the process that is **opposite** to photosynthesis in plants
- Like any other organism, the **plant metabolism requires energy to function**, and this energy can be obtained through respiration, where **stored carbohydrate is broken back down** to release energy:

$C_6H_{12}O_6 + O^2 \rightarrow CO_2 + H_2O + Energy$

- In general, about **50%** of the carbohydrate produced by photosynthesis is eventually used for plant respiration
- This is also termed **autotrophic respiration** $(\mathbf{R}_{\mathbf{A}})$, to distinguish it from other types of respiration

3. Net Primary Production

• We can take the **difference** between the **gross primary production (GPP)** that creates carbohydrate through photosynthesis and the amount consumed by **autotrophic respiration (R**_A) to calculate **net primary production (NPP):**

 $NPP = GPP - R_A$

 Net primary production is not quite a quantity that can be measured directly in the field (by farmers or foresters), because a certain amount of NPP is also lost through means not accounted for above, such as through the action of herbivores and death of plant tissues; these factors in models are usually referred to collectively as litterfall

3. Net Primary Production

- Terrestrial ecosystem models often concern themselves with figuring out where NPP goes in a plant, i.e. how is it **allocated**:
 - Leaves
 - Trunk and stems
 - Coarse roots
 - Fine roots
 - litterfall

• From an observational point of view, its much **easier to learn about above-ground allocation** of carbon than that below-ground (to gain access to the root mass, you have to disturb the system, so like soil this is a bit of a mystery that is hard to study...)

3. Net Primary Production

- In general, the **allocation of NPP varies** with vegetation type, age of the plant, and availability of nutrients and water in the soil ... quite a few factors that plants can respond to in complex ways, but we can make **a few generalizations**:
- 1. Allocation of **NPP to leaves** is generally greater in shrublands than in forests
- 2. NPP to woody tissue ratios are greater in boreal regions than in the tropics
- 3. Annual **growth and turnover of root tissues** account for a significant fraction of NPP in most ecosystems

4. Heterotrophic Respiration

- Litterfall transfers organic carbon from vegetation to the soil, making it available to other organisms in the ecosystem
- Some of this carbon accumulates in the soil through time, but another portion of it is consumed by through decomposition by soil organisms, returning it to the atmosphere as CO₂ through heterotrophic respiration (R_H)
- Also produced are H₂O, nutrients, and organic compounds known as **humus**, which comprises the bulk of soil organic matter
- The soil pool of carbon undergoes **rapid turnover** at the **surface**, and **slow turnover** of humus **at depth**

5. Net Ecosystem Production

 We can take the action of heterotrophic respiration into account by taking the difference between the net primary production (NPP) and heterotrophic respiration (R_H) to calculate net ecosystem production (NEP):

 $NEP = NPP - R_H$

• Presuming we have **all the required information** (energy and matter inputs, organism characteristics etc.) we now have covered the **basic concepts** that we would need to construct a model that would simulate NEP, and give a sense of the overall productivity of an ecosystem under a certain set of conditions:

5. Net Ecosystem Production

Waring, RH, Running SW. 1998. <u>Forest Ecosystems: Analysis at</u> <u>Multiple Scales</u>. Academic Press, USA. p. 60.

Project Objectives

- **DOC concentration or flux** to runoff **varies** according to the land's physical biological, climatic and hydrological characteristics, including seasonal productivity and soil properties
- 1. To investigate what **land surface factors** affect the **variability** of the **DOC runoff rate**?
- 2. To accurately estimate DOC flux at the sub-basin scale?
- 3. To **integrate DOC flux** from the sub-basin scale to the **entire watershed's scale**, and to **route fluxes** to the receiving coastal waters by **considering transport processes**

Applications of the Model

- To examine **seasonal trends** of DOC flux to coastal waters in the last two decades
- To examine percent changes of total annual DOC flux **due to land cover type changes** in the past decade (i.e. the impact of human activities)
- To examine **impacts of climate change** on DOC flux to coastal waters

Components of the Model

SIP: Mean monthly carbon flux at Milton Dam Compartments:

Photosynthesis of land biota (f(x) of veg., LULC)
Respiration of land biota (f(x) of veg., LULC)
Soil respiration (soil types)
Plant roots to the soil (soil types and LULC)
Scenarios:

Deforestation, clearing, litter fall Human activities and natural events

Topographic and Location Factors

- Slope
- Aspect
- Distance (from stream)
- Size (of land-use proportion in sub-basin)

Hydrological Factors

- Precipitation
- Surface runoff production (as volumes)
- Surface flow rate (for routing)
- Sediments

Other Relevant Factors

- Climate (in particular, temperature)
- Seasonal Characteristics

Land Cover 2001

- Recalculate % LULC on subbasin basis
- Incorporate **new data** for associated areas
- Use leaf area index (LAI) from remote sensing to take into account seasonal effects

flux is defined as the amount that flows through a unit area per unit time http://www.epa.gov/mrlc/definitions.html

LAI is the ratio of total upper leaf surface of vegetation divided by the surface area

Photosynthesis

- The conversion of light energy into chemical energy by living organisms
- The **raw materials**: Carbon dioxide and water (plus sunlight)
- The **end-products**: Oxygen and (energy rich) carbohydrates

Soil Types

- Correlate soil with DOC samples
- Identify the dominant and % of soil types per sub-basin
- Also identify **adjacent** soil types

Explore Other Important Variables

- Hydrological processes
- Soil types
- Distance to outlet
- Dominant land cover
- LAI
- Scale (size) of the sub-basin
- Sediment

Some Definitions of C

- **Total Carbon (TC)** all the carbon in the sample, including both inorganic and organic carbon
- **Total Inorganic Carbon (TIC)** often referred to as inorganic carbon (IC), carbonate, bicarbonate, and dissolved carbon dioxide; a material derived from non-living sources.
- **Total Organic Carbon (TOC)** material derived from decaying vegetation, bacterial growth, and metabolic activities of living organisms or chemicals.
- Non-Purgeable Organic Carbon (NPOC) commonly referred to as TOC; organic carbon remaining in a sample after purging the sample with gas.
- **Purgeable (volatile) Organic Carbon (POC)** organic carbon that has been sparged or removed from a sample.
- **Dissolved Organic Carbon (DOC)** organic carbon remaining in a sample after filtering the sample, typically using a 0.45 mm filter.
- **Suspended Organic Carbon** also called particulate organic carbon (PtOC); the carbon in particulate form that is too large to pass through a filter.

Further Investigations

- Search for information on **factors** affecting **DOC losses in runoff**
- Search for information on DOC concentration / ratio / weight factors in runoff from different land covers