Model Design and Evaluation

David Tenenbaum - EEOS 465 / 627 - UMass Boston

Some Difficult Problems

• Spatial conflicts

- Ecosystem function vs. development factors
 - More (conflicting) demands on the same resources
 - Non-preference (or objection) but still need to allocate
 - LULU (locally unacceptable land uses)
 - NIMBY (not in my back yard)
- Multiple development preferences
 - One use often **decreases suitability of another** (siting power line: preempts, and land used)
- Suitable to multi-purposes
 - **Ranking** and restriction(s)

Spatial Conflict - Solutions

- Solutions are messy, difficult, often iterative
 - GIS is of assistance to solution
 - Visualization as basis for descriptive modeling
 - Analytical methods for prescriptive
 - Prescriptive often requires **direct interaction with decision makers** during the modeling process

Spatial Conflicts

- Two types of spatial criteria (e.g. LESA)
 - Site criteria
 - Deal with the direct impact on the actual site
 - e.g. size of parcel, current zoning, within a flood zone are all site factors related to viability for agricultural use
 - Situation criteria
 - Deal with the **impact on the surrounding area**
 - Neighborhood criteria
 - » Off site
 - These require us to know what **particular land use** is to occupy the site and its **potential impact on the surrounding area**
 - » The situation
 - LESA: Aims to include zoning, aesthetic, compatibility and infrastructure in **decisions**

Situation Criteria

- Other situation criteria that need to be addressed:
 - How far from the site is the **impact zone**
 - (e.g. the **distances used** in the LESA factors)
 - Often designed to be **very conservative**
 - Also chosen based on **rather arbitrary** decisions
 - **Explicit definition** of what is being impacted
 - e.g. for **each potential land use conversion** are that we concerned about... off-site hydrology, wildlife, land values, etc.
 - Often more difficult to define for situation than for site
 - Often more spatially extensive in outcome
 - Requires us to **limit** what is to be considered

Generating Alternatives

- GIS is capable of generating alternative uses
 - Rating parcels by capability or its suitability
 - The idea of generating constraints (multi-criteria)
 - Logic and ranking
 - Results in maps that show where certain land uses
 cannot be supported
 - These maps provide:
 - A set of possible land use allocation solutions
 - A set of **alternatives**
 - Overlay of these shows many possible land uses in certain areas of any region
 - May require us to tighten our constraints

The Orpheus Method

- The method to **facilitate the allocation process** (spatial conflicts)
- Descriptive component
 - Illustrate the **potential** of each possible land use
 - Examines site criteria for each proposed use
 - Conservation, agriculture, forestry,
 - Constraints
 - Then examines the situation criteria
- Results in a suitability map for each possible use
 - Each a descriptive model
 - Each has two parts:
 - Site suitability map
 - Situation suitability map

The Orpheus Method Cont.

- To facilitate the allocation process (continued)
- Prescriptive component
 - An iterative process
 - Used to generate the **allocation** of land uses
 - Essentially, a search for stability
 - What achieves most constraints and most uses
 - Requires methods of **defining stopping rules**

Conflict Resolution

- Consensus building
 - General agreement on terms, conditions, and limits
 - Best started during **descriptive phase**
- Hierarchical methods
 - Weighting and re-weighting
 - Interactive, involving **decisions about importance**
- Displaced Fuzzy Ideal
 - Take advantage of **fuzzy logic** to resolve multiple considerations

The Iterative Prescriptive Component

An Example using LESA

- Land Evaluation and Site Assessment Model
 - Designed to evaluate land-use at the **county level** – Focus is the proper **allocation** of agr. land for non-agr.
 - The goal is to **preserve good farmland**
 - Review some **relationships** that form the LESA model (slides in the **<u>Building Models</u>** slideshow)
 - Infrastructure, socioeconomic factors, and zoning regulation
 - Now prescribe, rate every land site

Hierarchical Compartmentalization

LESA Model Components (Compartments)

- 1. Land use / agriculture (local and adjacent)
- 2. Agricultural economic viability (investment, size)
- 3. Land use regulations (% zoned agr., adjacent to zone)
- 4. Alternative locations (availability, productivity)
- 5. Compatibility of proposed use (surrounding hydrology, for example)
- 6. Compatibility with master plans
- 7. Infrastructure (city, transportation, utilities)

Adding the Spatial Dimension

- Land use / agriculture
 - Existence of **agricultural land** in and around the proposed land conversion sites
 - **Three components** (that are basically spatial in nature):
 - Land on site
 - Land adjacent to site
 - Land within a specified distance of site
 - **Size of farm** (which is fundamentally spatial)
 - Restricts use
 - Agrivestment (aspatial)
 - Do we abandon this factor?
 - Or do we find spatial surrogates?

Finding Spatial Surrogates

• Agrivestment

- Obtain financial records (machinery, roads, buildings, improvements...)
 - Divide investments **by farm size** (a ratio)
 - Or we could **incorporate a \$/ft**² for individual items
- Alternatively, we could use agrivestment as a non-spatial multiplier or operator
 - e.g. average annual investment for each farm

Accuracy Assessment and Measurement

- The **final step** (in remote sensing and GIS and modeling)
 - Explanation and acceptance (correct and useful)
 - Describing environmental processes and the utility of results in doing so
 - Not only the production of results, but ensuring that they have meaning (i.e. not just pretty pictures)

Defining the Terms

• Verification

- Computational code and algorithms
 - **Correctness**: numerical values (not always the case?), **repeatability** of equation performance
 - **Consistency**: Desired results are **consistent** (application to application)
 - Conceptual level (ground truth **unimportant** here?)
 - Ideally **both** at component level and entire system
 - Can be cartographic or non-cartographic

Validation

- Does the model correctly represent the real world? (are the abstractions adequate / well applied?)
- Acceptability
 - **Does it work** as a decision-making tool?
 - Both Verification and Validation **support** Acceptability

Non-Cartographic Verification

• Verify the responses by **varying one variable** (and often by examining time series output)

Verifying GIS Map Data

- Several **decisions** to be made in performing **cartographic verification**:
 - Selecting a **process** for testing the algorithm
 - Selecting a useful portion of data set to use for comparison
 - Selecting the **size of dataset** to be used for testing
- Necessary to have an **expectation** about the output beforehand (what should it look like?)

Verification and Function Types

By neighborhood

Verifying Local Functions

- Recall that local function use **by-cell** operations
 - Select cells for verification that represent important categories or values in the model
 - If we can verify adequate function in these locations, we have confidence that it is adequate

Output Matrix

Input Matrix

÷

Input Matrix

Focal Functions

- Evaluate individual cells (focal cell) based on the conditions of a neighborhood of surrounding cells
 - Output consists of a single cell at a time
 - Neighborhood is a moving window of input

Verifying Focal Functions

- Select some cells for examination that are within the near neighborhood, and some outside of it
- This way we can check to make sure the function is working correctly

Zonal Functions

- By zone (formal regions)
 - Contiguous, fragmented, perforated (whatever!)
 - Zones defined in a separate grid (i.e. 2 grids required)
 - Statistical operands used per zone
 - Min, max, majority, mean, median, std dev, variety, range, sum, etc.

Verifying Zonal Functions

- Select two or three locations that contain both regional and extraregional portions, and also test if there is any effect of fragmentation
- Basically, trying to include all possible scenarios, rule out problems

Block Functions

- Modified versions of focal functions
 - Use moving window
 - Unique block at a time
 - Uses typical operands
 - Min, max, majority, mean, median, std dev, variety, range, sum, etc.

Verifying Block Functions

- Select a prototype database that crosses multiple blocks to make sure the function is operating properly from one adjacent block to another
- That is, use one sample to look at 2 or 4 blocks at once; an efficient way to check

Global Functions

- Truly a bird's eye view
 - Considers the entire grid at once
 - Output may be functionally related to every grid cell in one or more grids at any given time
 - Software must have access to all grid cells
- Groups of global functions radically different:
 - Euclidean distance global functions
 - Weighted distance global functions
 - Surface global functions
 - Hydrologic global functions
 - Groundwater global functions
 - Multivariate global functions

Verifying Global Functions

- Perhaps the **hardest** to verify, because of global nature of input
- A safe method is to start at a target cell, and then check successive groups of cells that surround that cell to see if the results make sense
- Replicating algorithm manually ...

Verification Analog vs. Digital

- In all cases, what we are doing is trying to reproduce the output of the function manually, and comparing it to the computer-generated version
 - i.e. an analog vs. digital comparison of the output
 ... their difference should be 0, and thus be identical if all is well and working properly

Impact of Successive Reclassification

• Are our operations in the **correct order** / possessing the **distributive** property?

Problems in Logic

- An easy way to make mistakes in raster GIS modeling is to use numerical scales improperly
 - This is reasonably **easy to do** because:
 - Regardless of the scale of measurement, all are encoded in rasters as values → you have to either have the metadata or remember what the values mean!
 - e.g. Nominal values **multiplied** by ratio value
 - 5, 10, and 15 for urban, agriculture and vacant land
 - Multiplied by 10, 20, and 30 feet produces ... gibberish?

Model Validity

- How well does the model **mimic / represent / approximate** reality?
 - Tomlin's approach: "Assuming my logic is correct, and the algorithms correctly implement that logic, then the model is valid."
 - A better approach: Ask the following "Is the model actually modeling what I think it is?"
 - Visit the site (field checking)
 - **Compare** to validation dataset
 - Small area **prototyping** (has time constraints)
 - Might require sub-setting the dataset (frowned on by many modelers as invalid)
 - **Statistical analysis** (regression or similar predictive models as a check)

Parsimony and its Importance

- How **elegant** is your model (and why is that important)?
 - Easier to explain
 - Easier to check for correctness
 - Easier to understand complex situations
 - Easier to refine and expand
- Ways of **measuring** parsimony:
 - 1. Number of steps
 - 2. Simplicity of steps
 - 3. Amount of computation time
 - 4. Ease of comprehension
 - 5. Number of iterations
 - 6. Ratio of parsimony to model thoroughness

Model Acceptance

- This may be the **most important** step
- Does the **client accept it** as a decision tool?
 - May even determine whether or not you get paid
- Provide **tests** of model results
- **Demonstrate** the GUI for applications
- Is the model **provided in time** to be used?
- Are there any parts missing?
- The key is to keep the client involved throughout the process → Ownership of process & product

Exercise 10: Building Models

- EXERCISE 10A: MODELING TECHNIQUES AND TOOLS
- EXERCISE 10B: MODELBUILDER AND WEIGHTED SUITABILITY

Building models with ModelBuilder

• A graphical modeling environment for ArcGIS

Model elements

• All elements have **context menus**

Running a Model

- Two options:
 - Run from ArcToolbox like other tools
 - Run in the ModelBuilder window—all or one process

Setting Tool Parameters

- Open the standard **tool dialog:**
 - Double-click the tool or choose Open from the context menu

Setting Model Parameters

• Mark data as a parameter; appears in the model dialog

Setting Derived Data Properties

- Controls how derived data is handled:
 - **Intermediate**: Temporary (auto-delete ... or not)
 - Add to Display: Add to ArcMap Table of Contents
 - Model Parameter: Add to ArcMap and permanent

Setting Diagram Properties

Set Manual or Automatic layout mode

David Tenenbaum - EEOS 465 / 627 - UMass Boston

Setting Model Properties

Access Model			
Model Edit View W			
N Run			
Run Entire Model			
Validate Entire Model			
Save			
Delete Intermediate Data			
Print Selup			
Print Preview			
Print			
Report			
Model Properties			
Diagram Properties			
Export •			
Import +			
Close			

- Set Name, Label, Description
- Set Parameters order
- Set Environments
- (local to model)
- Set Help file
- (HTML)
- Set Stylesheet
- (XSL)

1D%		
۲	lagor point factures	
	3	
•	Zvalaefield	
•	Output nation	
	(· · · · · · · · · · · · · · · · · · ·	
	Output call size (optional)	
	Power (optional)	
	2	
	Search radius (aptional)	
	Wandsh 🔄	
	Search Reduc Sellings	
	Number of permits	CONTRACTOR OF
		Section 1
	N SHORE CENTRE	615
		ALC: NOT
	Input leavier polyline features (optional)	and the second second
	G8	-
	"This tool is dependent in The 2018 Galax to Cit Angewent have	M2
	What have a Very Data	12 A
	Dt East	Disord Hall and

Saving, Exporting, and Printing a Model

- Model is **saved** to a TBX file or a geodatabase
 - Share TBX or geodatabase with others
- Export models
 - To a graphic: BMP, JPG, EMF
 - (may add to ArcMap layouts)
 - To a script: Python, JScript, VBScript
 - (quick way to learn scripting)
- Print models
 - With borders, captions, page numbers
- Generate reports
 - List data, tool parameters and so on

Next Topic:

March Vacation!

David Tenenbaum - EEOS 465 / 627 - UMass Boston