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Components of a Model

Mathematical models have three basic components:  The input data, 
the algorithmic portion that does the modeling, and outputs that 
describe the results

Nix, S.J.  1994.  Urban Stormwater Modeling and Simulation. Lewis Publishers, U.S.A., p. 23.
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Lumped vs. Distributed Models
• We can distinguish between two types of models:
• Lumped Models – These are the sorts of models you 

likely would have focused on a hydrology course
– They represent inputs and responses in terms of the 

dimensions of time and whatever is being modeled
(issues of location and associated dimensions of length, area 
and volume are often absent)

– No account is taken of variation within the entity being 
modeled:  It is assumed to be homogenous and well-
mixed, i.e. Suppose we were running an evaporation model 
for a particular forest stand.  Even though there are likely 
various types of trees, canopy heights and densities, 
variations in soil etc. we model that forest stand using a 
single LAI and K, and with uniform soil characteristics etc.
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Lumped vs. Distributed Models
• Distributed Models – These sorts of models take the 

variation of phenomena in space into account in their 
model structure
– Both inputs and responses have a spatial aspect to them, 

i.e. mapped information is required as part of the input, 
and the output includes spatial pattern information

– Distributed models are thus very useful when it comes to 
representing and studying variation.  While the modeled 
sub-units still usually use the assumptions of homogeneity 
and being well-mixed, the units’ size and shape are adjusted 
to make these assumptions as reasonable as possible, i.e.  
Perhaps the forest stand we are modeling consists of 2 or 3 
distinctly different sub-units, each with distinct species, and 
canopy and soil characteristics.  We could then model each 
of these sub-units with its own parameters.
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Catchment Representation 
in Distributed Models

• There are a tremendous number of strategies that can 
be used in breaking up the world into sub-units

• We can generalize that the goal is usually to minimize 
variation with a sub-unit and maximize the 
variation between units, but beyond that the 
possibilities are endless:
– Tessellations can use regular (repeating) or irregular shapes
– Raster or vector spatial data models can be used
– The set of model elements can be fixed throughout a 

simulation, or they can change as well …
• The representation chosen usually reflects the particular 

catchment and processes being studied, and the 
assumptions made about their variation
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Regional HydroEcological 
Simulation System (RHESSys)
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Landscape Representation 
through Object Partitioning

• RHESSys divides the landscape into a series of 
successively contained partitions:

1) The method for creating a 
partition is determined by 
the processes it will represent

2)

Once landscape objects in a 
partition are defined, 
parameters at that level are 
determined

3)
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RHESSys GIS Preprocessing
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RHESSys GIS Preprocessing
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RHESSys GIS Preprocessing
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RHESSys GIS Preprocessing
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Water movement through the 
soil-plant-atmosphere continuum

• Soil water that can be freed from the soil can proceed to 
the atmosphere in two ways:

• Evaporation - Water in the soil evaporates directly into 
the atmosphere.  Evaporation only affects the thin 
surface layer of soils, as the resistance to liquid water 
movement in soils is high

• Transpiration - Plants provide an ideal conduit for the 
movement of water between soils and the atmosphere.  
Roots grow deep into the soil and can tap into water 
reserves far from the surface, providing a pathway 
between the deeper soil and the atmosphere
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Fig. 1: vapor pressure (ea) 
at soil – plant –
atmosphere interface

Transpiration loss
• a major component of 

vapor exchange at soil –
atmosphere interface… 

H

L
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Controlling factors for ET
1. Water: 

• open bodies, intercepted, soil, plants 

2. Energy:
• major source is short-wave solar 

radiation
• long-wave (sensible heats surfaces) &
• latent heat (exchanged within air masses)

3. Vapor pressure (humidity):
• Difference between atmosphere & water 

source
• pressure gradient controls rates of 

movement of H2O molecules from                                        
moist surfaces to atm.

• recall, ea ≤ e* or ea ≤ es

• cannot exceed RH =100%

Using Dalton’s Law (partial pressure) in the ideal-
gas law, the vapor pressure expressed as:

e = ρv × Rv × T

where e is the vapor pressure, ρv is the mass per 
unit volume of water vapor, Rv is the constant for 
this gas, and T is the absolute temperature
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Controlling factors for ET
4. wind:

– turbulent airflow above moist 
surfaces removes saturated air 
replacing it with unsaturated air 
(↓ea)

5. vegetation:
– transpiration is a product of 

photosynthesis
• uses soil moisture 

– rates controlled by ea

– also includes Ei losses from 
plant canopies

– E from bare soil may actually » 
T from veg… why?
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Latent heat exchange (LE)

• LE is ‘lost’ during vaporization (λv) & causes a reduction in Ts (i.e., 
cooling of surface) …. Example?
– if we measure ∆LE, we know amount of energy avail. for evaporation

• LE =   ρw ⋅ λv ⋅ E    =  ρw ⋅ λv ⋅ Ke ⋅ va (es - ea)

• λv latent heat of vaporization [E M-1] or MJ kg-1

• as Ts increases, λv decreases:  λv = 2.5 – 2.36 x 10-3 Ts

• about 2.45 million joules are required to evaporate 1 kg of 
water at 20°C
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Sensible heat exchange (HS)
• upward sensible heat transfer, HS via turbulence: 

HS = Kh· va (Ts - Ta)  12
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• Kh coefficient describing upward transfer of HS by 
wind

• Ca is heat capacity of vapour-bearing air
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Bowen Ratio
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Bowen Ratio (β) used to describe ratio of HS:LE

γ= psychrometric constant
• describes the heat capacity, air density and latent heat of 

vapourization properties of the air mass
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Measuring & modeling ET

Five commonly used approaches:
1. Direct measurement of moisture loss
2. Radiation balance-based
3. Aerodynamic based (mass transfer)
4. Combined radiation-aerodynamic
5. Temperature-based
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Direct measurement
• evaporation pan: E of exposed 

water from budget of W 
inputs & ∆ storage volume (V)  
– Epan = P – [V2 – V1] 
– more appropriate for short 

vegetation & ground cover
– spatially limited, design biases, 

does not measure transpiration

Evaporation station at private 
laboratory of Robert Horton. 
In: Monthly Weather 
Review: 1919,  Sept.: 608.
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Direct measurement
• Lysimeter: ∆ in weight of a control volume of 

soil proportionate to ∆ in volume of moisture 
lost by surface evaporation & plant transpiration
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Radiation balance-based
• After the Earth’s surface receives Rn radiative energy, the 

energy is used in the following ways:
• A portion of it will be used to evaporate or transpirate

water from the liquid state to the gaseous state.  This is 
called latent heat (LE) as the energy will be released 
when the gaseous water changes back to liquid state

• A portion of it will be used to heat the atmosphere, 
which is called sensible heat (HS)

• A portion of it will pass through the Earth’s surface to 
heat the soil below (Q)

• A small fraction of the energy is used by leaves for 
photosynthesis and this energy is stored in the chemical 
bonds of carbohydrate produced by photosynthesis (A)



David Tenenbaum – EEOS 383 – UMass Boston

Radiation balance-based
• We can describe the way the net radiation received by the 

Earth’s surface is partitioned using the Energy Balance 
Equation:

Rn = LE + HS + HG + A

Where: LE: Latent heat

HS:  Sensible heat

HG : Energy stored in the soil

A: Energy stored in photosynthate
• How Rn is distributed among the items on the right hand side is 

determined by the ecosystem biophysical characteristics and 
has major consequences for ecosystem development and 
functions



David Tenenbaum – EEOS 383 – UMass Boston

Radiation balance-based
• You can calculate the ratio between sensible and latent 

heat fluxes, and this is known as the Bowen Ratio (β):
β = H / LE

• The sensible heat flux is often difficult to measure, but 
if you can estimate the Bowen Ratio, you can rewrite the 
net radiation balance equation in terms of latent heat:

Rn = H + LE + HG

Rn = (β * LE) + LE + HG

LE = (Rn- HG) / (1 + β)
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• Method seeks to apportion available energy 
between sensible and latent heat flux by 
considering their ratio

• assumes neutral stability (buoyancy effects are 
absent) and steady state ( no marked shifts in 
radiation)

Radiation balance-based
Evaporation calculated via Bowen ratio energy balance method
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• Semi-empirical approach requires measurements on one level 
above surface

Priestly & Taylor (1972):

Radiation balance-based
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where:
PET is potential evapotranspiration (mm per time)
s = (e*s – e*a)/(Ts-Ta)… describes gradient of e* vs. T at a given air 

temperature
α is an empirically derived evaporability factor (usually 1.26)
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• Penman (1948) developed a method considering the factors of both 
energy supply and turbulent transport of water vapor from an 
evaporating surface

• Requires meteorological measurements at only 1 level

• in the combination method LE is calculated as the residual in the energy 
balance equation with sensible heat flux estimated by means of an 
aerodynamic equation

• widely used for estimating potential evapotranspiration

• original method designed to estimate evaporation from open-water or 
well-watered surfaces
– e.g., lake, pond, and wetlands

Combined approaches
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Penman (1948):
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Aerodynamic resistance, ra, describes the 
resistance from the water or vegetation upward and 
involves friction of air flowing over water or 
vegetative surface
ra = aerodynamic resistance (s m-1)              

uz = is wind speed (m s-1) at elevation z (m)                                            

κ= van Karman’s constant (0.4)                                                 

κzo = roughness length (m)                                         

κd = zero plane of displacement

Combined approaches
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Combined approaches
• Penman-Monteith equation common for ET from a 

vegetated land surface

 
)]/1([

 ) - ( )GR( 
   

a

acvw

a

saa
N

rrs
r

eecs
PET

+⋅+⋅⋅

⋅
+−⋅

=
γλρ

ρ

active
c LAI

r ir  =

where:

rc = canopy resistance (s m-1)

ri = bulk stomatal resistance of the well-illuminated leaf (s m-1)                          

LAIactive = active (sunlit) leaf area index (m2 leaf area per m2 soil surface)
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Satellite Imagery - Sensing EMR
• Digital data obtained by sensors on satellite platforms
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• In remote sensing, the medium that usually carries the 
information is electromagnetic radiation. Using various 
sensors, we can collect the electromagnetic radiation in 
any portion of the spectrum. Based on the source of the 
energy, remote sensing can be broken into two categories:

• Passive remote sensing: The source of energy collected 
by sensors is either reflected solar radiation (e.g. 
cameras) or emitted by the targets (thermal imaging).

• Active remote sensing: The source of energy collected 
by sensors is  actively generated by a man-made device.  
Examples include radar (which uses microwave energy) 
and LIDAR (LIght Detection Imagery And Ranging, 
which uses a laser).

Two Types of Remote Sensing
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Electromagnetic radiation energy:  Wave-particle duality

particleWavelength (λ)
• EMR energy moves at the speed of light (c):           c = f λ
• f = frequency:  The number of waves passing through a point within 

a unit time (usually expressed per second)
• Energy carried by a photon:  ε = h f [h=Planck constant (6.626×10-34 Js)]

• The shorter the wavelength, the higher the frequency, and the more 
energy a photon carries.  Therefore, short wave ultraviolet solar 
radiation is very destructive (sunburns)

Solar Radiation
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Atmospheric windows

Solar Electromagnetic Radiation
•The sun emits EMR across a broad spectrum of wavelengths:

But the atmosphere 
blocks much of the 
energy before it 
reaches the surface
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1. The area is covered with a grid of cells
2. Each cell has a digital number

indicating the amount of energy 
received from the cell (in a certain 
wavelength range)

3. The cell is called a pixel (a picture 
element)

4. The size of the pixel is the spatial 
resolution 

sensor

Digital Images
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Spectral Bands of Landsat Thematic Mapper Sensors
http://www.satelliteimpressions.com/landsat.html 

Multispectral Remote Sensing
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Satellite Imagery - 4 Resolutions
• Satellite imagery can be described by four resolutions:

– Spatial resolution: area on ground represented by each pixel, e.g.

• Landsat Thematic Mapper - 30m
• Advanced Very High Resolution Radiometer (AVHRR) and 

Moderate Resolutions Imaging Spectrometer (MODIS) - 1km
• SPOT - 10m panchromatic /20m multispectral
• IKONOS - 1m panchromatic /4m multispectral

– Temporal resolution: how often a satellite obtains imagery of a particular 
area

– Spectral resolution: specific wavelength intervals in the electromagnetic 
spectrum captured by each sensor (bands)

– Radiometric Resolution: number of possible data values reportable by each 
sensor (how many bits)
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Spectral Enhancements
• Can take ratios or other combinations of multiple input 

bands to produce indices, e.g.:

• Normalized Difference Vegetation Index (NDVI)

– Designed to contrast heavily-vegetated areas with areas 
containing little vegetation, by taking advantage of 
vegetation’s strong absorption of red and reflection of 
near infrared:

– NDVI = (NIR-R) / (NIR + R)

• Surface temperature (Ts) from IR bands using Price (1984):

– TS = TIR1 + 3.33 (TIR1 – TIR2)
• Wavelengths:  TIR1 = 10.8 µm, TIR2 = 11.9 µm
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•AVHRR (Advanced Very High Resolution Radio-meter)
is also a joint venture between NASA and NOAA, and this 
sensor has been present on many platforms
•AVHRR images water vapor in the atmosphere and 
surface temperatures, and does so at a spatial resolution of 
1.1 km pixels at nadir, and uses a sun-synchronous orbit that 
has these satellites image the entire surface of the Earth 
every 12 hours
•Because AVHRR has red and near infrared bands, along 
with short-wave infrared and thermal infrared bands, it can 
be used for vegetation studies in addition to the applications 
described above

AVHRR
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AVHRR Bands
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•Vegetation has a strong contrast in reflectance between 
red and near infrared EMR, and NDVI takes advantage of 
this to sense the presence/density of vegetation

Normalized Difference Vegetation Index

NDVI = (NIR - R)
(NIR + R)

NDVI [-1,1]



David Tenenbaum – EEOS 383 – UMass Boston

AVHRR Satellite Imagery - NDVI

NDVI = (NIR-R) / (NIR+R)

Maryland Climate Division 6
1996 – Compositing Period 18
Aug. 30, 1996 – Sept. 13, 1996
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AVHRR Satellite Imagery - Ts

Ts :  Split-Window Algorithm (Price 1984)
TS = TIR1 + 3.33 (TIR1 – TIR2)
TIR1 = 10.8 µm, TIR2 = 11.9 µm

Maryland Climate Division 6
1996 – Compositing Period 18
Aug. 30, 1996 – Sept. 13, 1996
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Surface water/energy budget coupling over 
heterogeneous terrain

LE = fveg LE veg + (1 – fveg) LE soil

LE = f(Rn, T, gc, ga, gsoil, VPD)

ga = f(canopy structure, wind, ...)

gc = f(soil water, VPD, PAR, T, LAI)

gsoil = f(soil water, ...)

Rn ~ H + LE

Ts lower with greater LE (evaporative cooling) as a function of 
soil water (other factors),  greater canopy cover (higher NDVI)

Ts and NDVI estimated by a set of operational remote sensors
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Sensing Vegetation and Temperature
• Can take ratios or other combinations of multiple input 

bands to produce indices, e.g.:

• Normalized Difference Vegetation Index (NDVI)

– Designed to contrast heavily-vegetated areas with areas 
containing little vegetation, by taking advantage of 
vegetation’s strong absorption of red and reflection of 
near infrared:

– NDVI = (NIR-R) / (NIR + R)

• Surface temperature (Ts) from IR bands using Price (1984):

– TS = TIR1 + 3.33 (TIR1 – TIR2)
• Wavelengths:  TIR1 = 10.8 µm, TIR2 = 11.9 µm
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Interpretation of the VI-Ts Space

VI

Ts

c

c

dry line

wet line

full cover

partial cover

bare soil

Adapted from Sandholt et al. 2002
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• Nemani and Running (1989) suggested, and later 
Nemani, Pierce, Running, and Goward (1993)  
demonstrated, that the slope of the dry line (symbolized 
using σ) is a good overall indicator of the surface 
moisture condition of a region (where the Ts and VI 
pixels that are drawn from to form the 2-D Ts-VI 
distribution ) on the occasion when the imagery was 
collected
• Steeper, more negative slopes represent drier 

conditions (where Ts disparities are greater)
• So how do we form the 2-D Ts-VI distribution and find 

the slope of the dry line?

Dry Line Slope – Sigma (σ)
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Finding the Dry Line (σ) Slope

VI

Ts
• We begin with Ts and VI data, 

ideally collected using the same 
sensor at the same time (e.g. 
from AVHRR bands 1, 2, 4, & 5)

• We then translate the values for 
each pixel into a 2-D parameter 
space, the VI on the x-axis and 
the Ts on the y-axis
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2001 MODIS Yearday 241 Climate Division 3 Ts-NDVI Plot
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• With a real Ts-VI distribution, fitting a line to the upper 
envelope of the distribution is a little bit tricky!

• We can break it down into a two-part process:
• 1st, we must identify a subset of all pixels in the 

distribution that represent the upper envelope, that is 
those pixels with the highest Ts for a given VI
We can accomplish this through some sort of 
classification/filtering method

• 2nd, once we have identified the upper envelope
pixels, we must fit a line through them We can 
accomplish this through fitting a simple linear 
regression model

Finding the Dry Line (σ) Slope
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• Simple linear regression models the relationship 
between an independent variable (x) and a dependent 
variable (y) using an equation that expresses y as a linear 
function of x, plus an error term:

y = a + bx + e

Simple Linear Regression

x (independent)

x is the independent variable

y (dependent)

y is the dependent variable

b

b is the slope of the fitted line

a

a is the intercept of the fitted line

error: ε

e is the error term
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• The slope of the dry line (symbolized using σ) is a good 
overall indicator of the surface moisture condition of a 
region (where the Ts and VI pixels that are drawn from 
to form the 2-D Ts-VI distribution )
• But it is just that, a single number that is a regional 

descriptor of the surface moisture condition of the 
overall aggregate set of pixels

• What if we want to know something about the surface 
moisture condition of individual pixels?  How can we 
do this?
• One way is to take an approach that describes each 

pixel’s position in the distribution

Obtaining Per Pixel Dryness Info
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Temperature Vegetation Dryness Index

NDVI

Ts

wet line

B

A

TVDI = 1

TVDI = 0

TVDI = A/B
Sigma = b

Ts = a + b(NDVI)

dry line

Adapted from Sandholt et al. 2002
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Generating TVDI Values

VI-Ts VI

Ts TVDI
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AVHRR Satellite Imagery - TVDI

TVDI = 
Ts - Tsmin

a + bNDVI - Tsmin

Maryland Climate Division 6
1996 – Compositing Period 18
Aug. 30, 1996 – Sept. 13, 1996
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• The procedure for creating TVDI initially requires all 
the steps required to obtain σ :

1. Form the 2-D Ts – VI distribution
2. Calculate/find σ

followed by a few further steps:
3. Define the wet line along the bottom the triangle (which 

can usually be safely done in a fairly unsophisticated 
fashion)

4. Calculate TVDI as described (where is the point/pixel of 
interest positioned between the dry and wet lines at the 
given NDVI)

5. Take the resulting values and map them back to their 
respective pixels

Temperature Vegetation Dryness Index
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2001 MODIS Yearday 241 Climate Division 3 Ts-NDVI Plot

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

NDVI

T
s

Dry Line

Wet Line

Wet Line



David Tenenbaum – EEOS 383 – UMass Boston

•AVHRR has been superceded by MODIS (Moderate 
Resolution Imaging Spectrometer) which is a project being 
run by NASA, in partnership with the USGS (US Geological 
Survey)
•The MODIS sensors are the ‘centerpiece’ sensors on two 
new satellites that have been called Earth Observing Systems 
(EOS-AM and EOS-PM), codenamed Terra and Aqua
•Terra was designed to focus on land-based applications and 
has an equatorial overpass time of about 10:30 AM, while 
Aqua was designed for more sea-oriented applications and 
has an equatorial overpass time of about 2:30 PM, and the 
MODIS sensors on them are known as MODIS-AM and 
MODIS-PM

MODIS
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Orbit: 705 km, 

Time to cross equator: 10:30 a.m. descending node (Terra), 
2:30 pm descending node (Aqua) 

sun-synchronous, near-polar, circular

Sensor Systems: Across Track Scanning (‘Wiskbroom’)

Radiometric resolution: 12 bits

Temporal resolution: 1-2 days

Spatial Resolution:

250 m (bands 1-2)

500 m (bands 3-7)

1000 m (bands 8-36)

Design Life:  6 years

MODIS Characteristics
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MODIS
Bands
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Modeling TVDI

TVDI LULC
API REG

It =I0kt
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MODIS LULC In Climate Divisions

Maryland CD6

North Carolina CD3
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Passive vs. Active Remote Sensing

Passive sensors receive solar 
energy reflected by the Earth’s 
surface (2), along with energy 
emitted by the atmosphere (1), 
surface (3) and sub-surface (4)

Active sensors receive energy 
reflected from the Earth’s 
surface that originally came from 
an emitter other than the Sun

http://www.ccrs.nrcan.gc.ca/ccrs/learn/tutorials/fundam/chapter3/chapter3_1_e.html
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•Remote sensing using RADAR can be active or passive:
•Some earth materials do emit radiation in the microwave 
range of wavelengths (anywhere from a millimeter to a 
meter), and these can be sensed by a detector that 
operates just as many that we have already looked at 
does, sensing the energy passively
•However today we’re primarily going to look at active 
RADAR remote sensing, where the source of the 
microwave energy which returns to the sensor is a man-
made source or emitter, and the characteristics of the 
emitter and sensor are both selected for the particular 
application (i.e. choose the wavelength and other factors 
based on what you want to capture in the imagery)

RADAR Remote Sensing



David Tenenbaum – EEOS 383 – UMass Boston

Nexrad Doppler Weather RADAR
• The Nexrad network of weather RADAR sensors 

consists of 158 radars that each have a maximum 
range of 250 miles that together provide excellent 
coverage of the continental United States

The sensors are known by 
the designation WSR-88D
(Weather Surveillance Radar 
88 Doppler), and the station 
in this area is located at 
RDU airport is #64 - KRAX

http://www.roc.noaa.gov/
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CONUS Hourly Nexrad Rainfall
•Here is Nexrad gauge-
corrected for six one-
hourly periods for the 
afternoon and evening 
of March 10, 2005

•Note the changes in 
shape of the blue 
bounding box, which 
show that some 
RADARs were offline 
where no overlapping 
coverage was present, 
thus no information 
was available

http://wwwt.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/images/st4.6hrloop.gif



David Tenenbaum – EEOS 383 – UMass Boston

Antecedent Precipitation Index (API) 
from Stage IV Nexrad Data

•Successive daily Stage IV Nexrad rainfall data were accumulated 
into an antecedent precipitation index (API) for the study climate 
divisions for the study period

•The API is of the form It = I0kt where I0 is an initialization value, and 
k is a decay constant (0.9 is a typical value from Dunne & Leopold)

•For example, assume I0 = 5 mm and k = 0.9

•On t = 0, It = 5 mm * (0.90) = 5 mm

•On t = 1 it rains 1.5 mm, It = 5 mm * (0.91) + 1.5 mm

= (5 mm * 0.9) + 1.5 mm

= 4.5 mm + 1.5 mm = 6 mm

•On t = 2 it does not rain, It = 6 mm * (0.91) = 5.4 mm
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Antecedent Moisture from NEXRAD

NEXRAD Precip, 6/7/02:
Red = high, green = low

NEXRAD ANTECEDENT MOISTURE  & TVDI: 7, 11 June 2002

TVDI, 6/11/02: 
red = dry, blue = wet.

NEXRAD ANTECEDENT 
MOISTURE, 6/7/02: 
red = high, green = low.
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TVDI variation with API

Significant explanation of 
residuals of plot based 
on land use/land cover
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• Simple linear regression models the relationship 
between an independent variable (x) and a dependent 
variable (y) using an equation that expresses y as a linear 
function of x, plus an error term:

y = a + bx + e

Simple Linear Regression

x (independent)

x is the independent variable

y (dependent)

y is the dependent variable

b

b is the slope of the fitted line

a

a is the intercept of the fitted line

error: ε

e is the error term
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Regression Analysis Tool
•The basic output the tool produces includes:

The coefficient of 
determination (r2)

The standard error of 
the estimate (e.g. the 
standard deviation of 
the residuals), se

An ANOVA table, 
including the 
minimum α where F 
would be significant

The regression coefficients 
produced by the least squares 
optimization (in the simple 
case, like this one, the 
intercept and the slope)

The standard error associated 
with each parameter (e.g. for 
the regression slope parameter, 
this is sb, the standard 
deviation of the slope)

The t-statistic and the 
minimum α where 
each parameter would 
be significant


