Governing Rules of Water Movement

- Like all physical processes, the flow of water always occurs across some form of **energy gradient** from high to low...
 - e.g., a topographic (slope) gradient from high to low elevation
 Or a concentration gradient, pressure gradient, etc.
- All other things being equal, in a fluvial landscape that **has some relief**, water movement near the surface is going to follow the **topographic gradient downhill**
- Thus, by **modeling terrain** using a continuous surface, we can learn some useful things about the **movement of water** through a landscape

Watershed (a.k.a. Drainage Basin, Catchment)

• A geomorphically distinct **landscape unit** defined by topographic boundaries, or drainage 'divides' that acts as a spatially discrete hydrological system

Davis' (1899) Notion of a Watershed

- Davis provided the very useful metaphor of **the river as a leaf**, such that:
 - "one may extend the 'river' all over its basin and up to its very divides. Ordinarily treated, the river is like the veins of a leaf; broadly viewed, it is like the entire leaf" (Chorley, 1969, p.78).

Drainage basin properties

- basins consist of **networks** of interconnected & hierarchically organized channels (rills to rivers)
 - each with smaller sub-catchments separated by divides or 'interfluves'
- fluvial action alters the landscape & continually **maintains & expands** basin network...
 - headward erosion, stream piracy, channel incision/degradation &/or aggradation
- network patterns reflect geology, climate, topography, time... most common type is '**dendritic**'

Drainage network patterns

- Wind, ice and water act on land surfaces to create several types of drainage patterns
 - Particular design is a function of several factors
 - e.g. climate, geology, time, topography, sediment transport
- **Dendritic** numerous small tributaries joining at right angles into higherorder streams
- **Trellis** long main streams intercepted by numerous shorter right-angle tributaries (Appalachians, Foothills of Rockies)
- **Multi-basin** low gradient swampy areas with numerous depressions and normally have only a few tributaries (permafrost, glaciated, plains, valleys)
- Radial occur in foothill or mountain areas

Stream order (Horton 1945, Strahler 1954)

- hierarchy of channels from 1st order tributaries to nth order main channel
 - e.g., Mississippi R. at New Orleans is 14th order
- Strahler's rules:
 - junction of 2 streams of order
 'x' form next downstream order
 'x +1'
 - junction of 2 streams of different orders x & y, where y
 x, creates order equal to higher order stream (y)

Stream Order/Magnitude Methods

Figure 5: Stream Ordering Methods (Jones, 1997, p.176)

• Horton sub-divided the stream network on a streamordering basis, where the drainage network was broken into component parts, or reaches, and these reaches were assigned a stream-order, descriptive of their size (Chorley et al., 1984, p.317)

Stream Order/Magnitude Methods

Figure 5: Stream Ordering Methods (Jones, 1997, p.176)

 In 1964, Strahler improved Horton's stream-ordering approach. Horton's assignment of order values underestimated the importance and number of lowerorder tributaries. Strahler's scheme corrected this, and assigned values more impartially, rather than extending the higher-order stream further up the divide as Horton did (Jones, 1997, p.176).

Stream Order/Magnitude Methods

Figure 5: Stream Ordering Methods (Jones, 1997, p.176)

• Shreve further improved stream ordering in 1966 by introducing the concept of stream magnitude: Values assigned to a reach represented the sum of contributing reaches. This scheme better preserves the sense of the contribution of a given reach's drainage (Jones, 1997, p.176).

Relief

- maximum elevation difference in a watershed
- normalized by **channel length** to allow comparison between basins of different size
 - relief ratio, S = H / L where H is elevation change in basin along length main channel (L)
 - describes travel distance relative to elevation change... relevance?
- must also consider **basin area** (A)
 - relative relief, $R = H / (A^{0.5})$
 - indicates overall slope of the watershed & controls delivery time...
 how so?
- changes in **lowest elevation** (base level) in a basin have farreaching effects on drainage basin function... how?

Drainage network arrangement

 basin hydrological response largely a function of 'effectiveness' of the drainage network

– how could you define effectiveness?

- length, slope (relief) & shape of main channel, stream order, vegetation cover, land use...
- drainage density: average Length (L) per unit area (A)
 - $D_d = (\Sigma L) / A$
 - how would D_d control 'effectiveness' of water delivery in a basin?
- bifurcation ratio,

 $- R_b...$ (# streams order x) / (# streams order x+1)

Shape

Figure 7.24 Relations between catchment shape, bifurcation ratio (R_b) and the shape of the flood hydrograph (from an original diagram by Strahler, 1964).

Digital Elevation Models Raster Grid

D8 Analysis Sequence

- Assume we now have a raster DEM and we want to use it find a watershed and drainage network through D8 analysis
- We can follow this **sequence of analysis** steps, each of which involves a neighborhood analysis operation:
 - Fill Sinks
 - Slope
 - Aspect
 - Flow Direction
 - Flow Accumulation
 - StreamLink & StreamOrder
 - Watershed

Fill Sinks

Original	Filled
DEM	DEM
Pits or Sinks	

•We need a DEM that does not have any **depressions or pits** in it for D8 drainage network analysis

•The first step is to remove all pits from our DEM using a pitfilling algorithm

•This **illustration** shows a DEM of **Morgan Creek**, west of Chapel Hill

Slope and Aspect

- These are **measurements of terrain attributes**, usually calculated from a digital elevation model
- **Slope and aspect** are calculated for each cell in the grid, by comparing a cell's elevation to that of its neighbors
 - Usually eight neighbors are used and the result is expressed as an angle, but the exact method varies
 - It is important to know exactly what method is used when calculating slope, and exactly how slope is defined, because different methods can give different results

Slope and Aspect

• We can **calculate** these topographic attributes directly from the grid-elevation values using a second-order finite difference scheme applied over a 3x3 neighborhood

Flow Direction and Accumulation

\sum	· · · ·		720 -	
2				
>		1		
		1		
R		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
2		Į	ς	
and the D	<u> </u>			~ 1
		I		

Flow	Flow
Direction	Accumulation
Log of Flow Accumulation	

•Slope and aspect are needed to produce **flow direction**, which assigns each cell a **direction of steepest descent**

•Flow accumulation uses flow direction to find the number of cells that drain to each cell

•Taking the **log** of accumulation makes the **pattern** much easier to see

David Tenenbaum - EEOS 383 - UMass Boston

Flow Direction

- Flow Direction evaluates the direction of steepest decent for each cell in the grid by comparing a cell with its eight neighbors in the following fashion:
 - drop = change in z value / distance * 100
 - Note that diagonal neighbors are 1.414214 times as far away as 4-connected orthogonal neighbors
- ArcGIS encodes the resulting direction of steepest decent in the grid using the following scheme: 32 64 128
- For example:

- 16 X 1
- 8 4 2

From ArcView 3.2 Help

Fill Sinks

- A sink is a cell or set of spatially connected cells whose flow direction cannot be assigned one of the eight valid values in a flow direction Grid. This can occur when all neighboring cells are higher than the processing cell, or when two cells flow into each other creating a two-cell loop.
- To create an accurate representation of flow direction and therefore accumulated flow, it is best to use **a data set that is free of sinks**. A digital elevation model that has been processed to remove all sinks is referred to as a **depressionless DEM**.

Flow Accumulation

- Flow accumulation find the number of cells that drain to any cell in the grid, taking the flow direction grid as input:
 - Output cells with a high flow accumulation are areas of concentrated flow and may be used to identify stream channels.
 - Output cells with a flow accumulation of 0 are local topographic highs and may be used to identify ridges.
- For example:

From ArcView 3.2 Help

Stream Links, Order, and Basins

•By selecting a **threshold value** for flow accumulation, we can produce a **stream network**

•This network can **divided** into **stream links**, which can in turn be assigned **stream order** values using network analysis methods

•Threshold=1 gives the **watershed**

David Tenenbaum - EEOS 383 - UMass Boston

Products of D8 Analysis

- Producing a drainage network using D8 provides some very useful descriptions of the landscape from a sinkless raster DEM:
 - For each cell we can determine which neighboring cell will receive its drainage (flow direction)
 - We can use the flow directions to find the flow accumulated at each cell
 - We can threshold flow accumulation to find a **stream network**
 - Through network analysis we can find stream links and assign order values to links
 - Using flow accumulation we can also find the set of cells that drain to a cell, its catchment/basin/watershed