MINIREVIEW

Developmental Patterning Genes and Their Conserved Functions: From Model Organisms to Humans

Alexey Veraksa,* Miguel Del Campo,† and William McGinnis*1

*Department of Biology, University of California, San Diego, La Jolla, California 92093; and
†Hospital Infantil La Paz, Universidad Autonoma de Madrid, Madrid, Spain

Received December 20, 1999

Molecular and genetic evidence accumulated during the past 20 years in the field of developmental biology indicates that different animals possess many common genetic systems for embryonic patterning. In this review we describe the conserved functions of such developmental patterning genes and their relevance for human pathological conditions. Special attention is given to the Hox genetic system, involved in establishing cell identities along the anterior-posterior axis of all higher metazoans. We also describe other conserved genetic systems, such as the involvement of Pax6 genes in eye development and the role of Nkx2.5-type proteins in heart development. Finally, we outline some fascinating problems at the forefront of the studies of developmental patterning genes and show how knowledge obtained from model genetic organisms such as Drosophila helps to explain normal human morphogenesis and the genetic basis of some birth defects.

Key Words: Hox; homeotic; organ development; Pax; tinman; axial patterning; human malformations; evolution.

All metazoans, including the writers and the readers of these lines, share a moment in their lifetime when they are nothing more than a single-cell zygote. It is remarkable to think about the astonishing variety of life forms and the intricate details of adult body plans that arise from this unicellular stage through the process of embryonic development. Exciting recent discoveries indicate that despite their variations in shape and complexity, animals are more similar to each other than meets the eye. The detection of covert similarity in diverse body plans has resulted from the great advances made in the past 20 years of developmental genetic research. For example, a series of investigations have shown that all bilateral animals, including humans, possess a common genetic mechanism for patterning the anterior/posterior (A/P) axis involving the Hox cluster genes (1–3, reviewed in 4,5).

Besides a common axial patterning system, other general architectural features in both vertebrates and invertebrates also appear to be controlled by common genetic mechanisms. Humans and insects possess organs of very diverse appearance serving similar functions, such as eyes for vision and hearts for blood circulation. Traditional views have held that these structures are analogous, i.e., convergently evolved, and are therefore likely to be specified by different genetic patterning systems (6–8). However, new evidence reviewed in this paper suggests that we now have good reason to call these organs homologous at the level of the genes that control their formation. Therefore, knowledge about the genes that control early development in human embryos can be obtained by the detailed study of “model genetic animals,” such as nematode worms, fruit flies, and mice.

1 To whom correspondence should be addressed at Department of Biology, 0349, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0349. Fax: (858) 822-0460. E-mail: mcginnis@biomail.ucsd.edu.
This review focuses on several cases of such conservation, drawing from what we know about the function of Hox genes and other "master control genes," to shed light on the continuity of developmental gene function from Planaria to Homo. We discuss the directions of current investigations, implications for human genetics and disease, as well as some fascinating but yet unanswered questions at the forefront of the Hox research.

The Role of Hox Genes in the Determination of Segment Identity along the A/P Axis: From Drosophila to Humans

Homeosis was originally described by Bateson as the phenomenon in which one element of a segmentally repeated array of organismal structures is transformed toward the identity of another (9). The genetic basis for these transformations of the body plan was unknown until seminal studies were done on homeotic selector genes (now often referred to as Hox genes). Mutations in such genes often result in homeotic transformations of the body plan in one or a few segments. A large and systematic collection of homeotic mutations was assembled in Drosophila (10,11). A well-known homeotic gene Ultrabithorax (Ubx) was originally identified by mutations that transform halteres (small club-like balancing organs of flies) into an extra pair of wings. Another classical homeotic phenotype is produced by dominant mutations that transform the antenna on the head of a fly into an extra thoracic leg.

Molecular analysis of the genomes of other organisms has revealed that all bilateral animals, including humans, have multiple Hox genes (Fig. 1). The proteins made from these genes all contain a similar 60-amino acid motif termed the homeodomain. Homeodomain proteins such as those of the Hox-type are transcription factors and exert their function through activation and repression of multiple target genes. Interestingly, the Hox genes are arranged so that the position and order of homologous genes (e.g., Deformed (Dfd) of Drosophila and HOXD4 of humans) are preserved in the Hox clusters of different animals. The functional significance of the conserved gene order in these clusters is still poorly understood. However, a likely reason for the maintenance of the clustered arrangement for more than 500 million years is that different genes in the cluster are controlled by the same DNA regulatory regions. Therefore, it can be argued that the cluster functions as a single, complicated genetic unit (12–14). In contrast to the single Hox cluster in Drosophila and most other invertebrates, humans and other vertebrates have four clusters of Hox genes (HOXA, HOXB, HOXC, and HOXD), that likely evolved by two successive duplications of a primordial cluster.

In addition to conservation of primary sequence and chromosomal organization, Hox gene expression patterns are also conserved in diverse animals. Persistent expression of Hox genes in discrete zones on the A/P axis is required to remind embryonic cells of their axial position long after the initial genetic cues are gone. Hox expression zones have sharp anterior boundaries, with less well-defined posterior boundaries. The order of anterior boundaries of Hox expression along the A/P axis of the embryo and the timing of activation during development are generally colinear with the order of the genes on the chromosome (15). It is interesting to note that the same Hox gene can have a slightly offset boundary of expression in different tissues, which is especially true for vertebrate embryos (Fig. 1). Within the same tissue, however, the relative expression boundaries of different Hox cluster members are preserved.

Conservation of Hox protein sequence and expression pattern suggested that vertebrate Hox genes control axial patterning in a manner similar to that in flies (16). This was confirmed when mouse Hox mutants were obtained and homeotic transformations were found in the skeletons of mutant embryos. For example, in Hoxc-8 homozygous mutant mice the most obvious transformations were the attachment of the 8th pair of ribs to the sternum and the appearance of a 14th pair of ribs on the 1st lumbar vertebra (17).

Studies in both Drosophila and mouse show that homeotic transformations in Hox loss-of-function mutants usually cause the affected body structures to resemble more anterior ones. Conversely, many gain-of-function mutant phenotypes are due to ectopic expression of more posterior Hox genes, which are capable of "canceling" the function of more anterior ones and specifying extra posterior structures. For example, when Drosophila Abd-A protein, which is normally confined to the posterior-most abdominal region of the fly embryo, is provided ubiquitously under the control of a heat-shock promoter, all head and thoracic segments attain a more posterior (abdominal-like) identity. The ability of a more posterior Hox gene to impose its function on more
FIG. 1. Conservation of genomic organization and expression patterns of Hox genes (modified from 4,18). The lower half of the figure depicts the four clusters of Hox genes in mammals and the expression patterns (inferred from mouse expression studies) of the orthologous genes in a stage 19 human embryo. The colored fields in the expression schematic depict the anterior-most domains of expression. In actuality, the posterior boundaries of the expression domains overlap in more caudal regions. Note a shift of the anterior expression boundaries between the nervous system and the segmented mesoderm, which nevertheless preserves the relative order of Hox gene expression. Several of the posterior HOXA and HOXD genes are also expressed in the limb primordia; they are collectively indicated by the yellow color. The upper half of the figure shows Drosophila Hox genes, aligned with their mammalian orthologs, and corresponding expression patterns in the adult fly (the Drosophila Hox cluster is split into two parts, located on the same chromosome). Recent data suggest that a minimum number of Hox genes present in a common ancestor of all bilateral animals is seven (141). Such a hypothetical ancestral Hox cluster is presented in the middle, with arrows indicating the predicted evolutionary origins of insect and mammalian Hox genes. For some of the central and posterior Hox genes, it is difficult to define precise homology relationships, and groups of genes with equal homology to an ancestral gene are indicated with brackets. Drosophila bcd and zen genes are not members of the Hox A/P patterning system. They represent fast-evolving insect homeodomain genes (141).
anterior genes is called posterior prevalence, or phenotypic suppression.

Human Phenotypes Associated with Mutations in Hox Genes

Despite the scarcity of available mutations in human and mouse Hox genes, it is possible to make a few generalizations about the observed effects of such genetic lesions. In many cases, mutations involving one or several mouse Hox genes do result in homeotic transformations, but they are also associated with loss of axial structures and organs and other nonhomeotic malformations (18). Part of the reason for the highly complex mutant phenotypes is that Hox genes are involved in an elaborate system of cross-regulatory interactions and redundant functions.

Hox genes are not required solely for the proper development of the rostro-caudal main body axis. In mammals, the posterior-most members of the HOXC, HOXD, and HOXA clusters (HOXC9-13, HOXD9-13, and HOXA11-13, respectively) are expressed in the developing limb buds (reviewed in 15) (Fig. 1). Many of the same genes from the HOXD and HOXA clusters are also expressed in external genitourinary structures (19–21). The limb and genital defects observed in mice and humans that possess mutations in the posterior Hox genes indicate that Hox expression is crucial for the formation of these body parts. Table 1 summarizes the known mutations in human Hox genes and their associated phenotypes.

Several groups have reported heterozygous and homozygous synpolydactyly phenotypes that cosegregated with an expansion in a 15-residue polyalanine stretch in exon 1 of the HOXD13 gene (22–24). A significant increase of the penetrance and severity of the phenotype correlated with increasing expansion size. Interestingly, the family with the largest expansion included affected males with hypopspadias, which is not a feature of the classic synpolydactyly (SPD), but correlates with the genital expression of the gene in mammals. Correlation between the severity of the phenotype and expansion size suggests that the added alanines cause gain-of-function mutations in the HOXD13 protein. This hypothesis is further supported by the fact that the synpolydactyly-homolog (spdh), a spontaneous mouse mutation carrying a similar expansion (25), has a much more severe phenotype than the complete absence of Hoxd-13 function (26).

Two different intragenic HOXD13 deletions that resulted in premature stop codons have been associated with a phenotype with some features of SPD and a novel foot malformation (27). Such truncations would eliminate the function of the HOXD13 protein, which suggested that this SPD phenotypic variant was due to haploinsufficiency for the HOXD13 gene. Finally, monodactylous limbs and abnormal genitalia were observed in two unrelated patients that were heterozygous for deletions spanning the whole HOXD cluster and nearby loci (28). The involvement of nearby genes in the monodactylous phenotype is suggested by the fact that less severe phenotypes are seen in mice with deletions spanning Hoxd9–13 (26,29).

Mutations in the posterior genes of the HOXA cluster also result in abnormal limb and genital development. The classic hand-foot-genital (HFG) syndrome is associated with heterozygosity for a nonsense mutation in the homeodomain of HOXA13 (30). This nonsense mutation is predicted to generate a truncated protein that would be unable to bind DNA, invoking haploinsufficiency as the most likely mechanism leading to the phenotype. The importance of a diploid dose of the HOXA genes is further suggested by the phenotype of a patient with a large deletion spanning the HOXA cluster. This patient possessed features of the HFG syndrome and other anomalies, possibly caused by the deficiency of other members of the cluster (31). An apparent dominant-negative phenotype is observed in the spontaneous mouse mutant hypodactyly (Hd), with a 50 bp deletion in the coding sequence of Hoxa-13. Hd mice have more severe limb defects than the Hoxa-13 null mutant (30,32). In another case, the expansion of a polyalanine stretch in the HOXA13 protein has been associated with a dominant HFG syndrome that includes an atypical metacarpophalangeal profile and genitourinary anomalies (33). Expansions and contractions of poly-amino acid tracts might be generated from unequal crossing over and be a common mutational mechanism for Hox genes (34).

“Master Control Genes” for Eyes and Hearts

The Hox genes are only one class of patterning genes that have similar developmental functions in simple experimental animals and humans. Another class consists of those genes that primarily control the development of one organ. The term “master control gene” has been coined to denote this class of embryonic patterning genes (35,36). Interestingly,
some of these “master control proteins” also contain homeobox domains that are distantly related to the original homeobox signature found in Hox transcription factors, while others are transcription factors of other types.

One of the well-studied master control genes is required for the specification of a blood pumping organ in a wide variety of animals whose “hearts” are of incredibly diverse shapes and sizes. This work began with the study of a Drosophila homeobox gene that was expressed in both dorsal mesoderm and the dorsal vessel (insect equivalent of the heart) (Fig. 2A). The dorsal vessel consists of a tubular muscle that circulates hemolymph within the open body cavity (37, reviewed in 38). This gene was named tinman, after the character in the “Wizard of Oz” (39) who desires a heart. Mutations in tinman resulted in dead larvae that were missing the dorsal vessel, as well as other dorsal mesoderm derivatives (40,41).

Molecular analysis of the mouse genome revealed that mice have tinman-like genes, one of which is called Nkx2.5 or Csx. The Nkx2.5/Csx gene is expressed in the fetal heart primordia (42,43)—a pattern that is strikingly similar to tinman gene expression in Drosophila. Targeted mutation of Csx/Nkx2.5 results in embryonic lethality, and embryonic heart development is arrested at the ini-
tial stage of heart looping (44). There is also evi-
dence from human genetics indicating that the hu-
man NKX2-5 gene (localized to chromosome 5q35) is
required for normal heart morphogenesis. Several
cases of familial congenital heart disease with de-
fects in the morphology of the atrial septum and in
atrioventricular conduction were associated with
both haploinsufficiency and gain-of-function muta-
tions in the NKX2-5 gene (45). These observations
led to a conclusion that the Csx/NKX2-5/Tinman-
like proteins are ancestral determinants of heart
and surrounding visceral mesoderm (Fig. 2A). Re-
cent data indicate that a pathway controlling early
heart development, involving several signaling mol-
ecules and transcription factors, is similar between
Drosophila and vertebrates (38,46,47). Even though?

![FIG. 2. Conservation of developmental patterning mechanisms involved in formation of the heart and eye primordia. (A) Schematic representation of an early mammalian embryo (left) and a Drosophila embryo (middle). The blue color denotes the domain of expression of the mammalian Nkx2-5 protein in the mesodermal cells that will give rise to the heart. A homologous fly protein, Tinman, is expressed in lateral mesoderm that will form the dorsal vessel, an organ performing the blood-pumping function in insects. Mutations in either of these genes result in abnormal heart morphogenesis. Nkx2-5 and Tinman share an NK-type homeodomain (right) and are thought to be ancient determinants of heart and lateral mesoderm. (B) Left panel shows the domains of expression of the mammalian Pax6 protein in the developing eye. Pax6 is concentrated in the retina and the lens. The Pax6-like protein in Drosophila, encoded in the gene called eyeless, is also expressed in the eye primordia (middle). Loss-of-function mutations in Pax6 are associated with syndromes affecting eye
development, and weak mutant alleles of eyeless result in loss of eyes in adult flies. Pax6-like proteins contain paired domain and homeodomain signatures and are found in all higher metazoans (right). Pax6-type transcriptional regulators have been involved in eye
formation since the early origins of all bilateral animals.]
the morphologies of insect and mammalian hearts are dramatically different, the underlying genetic machinery for the specification of a mesodermal zone that develops into a blood-pumping organ appears to be well conserved.

In addition to heart primordia, the mesodermal layer of the embryo gives rise to muscle, bone, and connective tissues. While the earliest events in specification of the mesoderm vary in different animal groups, one common denominator has been found in the development of skeletal muscle cells: a MADS box gene, MEF2 (D-MEF2 in the fly), is an early marker of skeletal muscle lineage in both insects and vertebrates (48). In vertebrates, MEF2 enhances and stabilizes the expression of such well-known muscle-specific genes as the basic-helix-loop-helix homologs Myf5, MyoD, MRF4, and Myogenin (49). In Drosophila, mesoderm fates are initially controlled by Twist and Snail proteins, and Twist directly activates D-MEF2 (48,50). D-MEF2 and its vertebrate homologs are required for the completion of myogenesis in all muscles (49,51). Key features of this system have been preserved through millions of years of evolution. Such features include the conservation of the MEF2 MADS domain, which mediates sequence-specific DNA binding, and conservation of DNA target sites in regulatory regions of the muscle-specific genes (48).

Another example of conservation of developmental patterning pathways was shown in a series of experiments that revealed a striking similarity in the mechanisms underlying the formation of eyes and photoreceptor cells in many different taxa. For most animals, the visual system is crucial for survival, and indeed it has been argued that primate brains receive most of their information through the eyes (52). As is often the case in genetics, relevant mutations proved crucial for unraveling the molecular pathways underlying eye development. Two such mutations have been known for quite some time...
time: the Aniridia defect in humans (53–55, reviewed in 56), and the Small eye (Sey) mutation in mice and rats (57–59). The human Aniridia syndrome is characterized by a reduction in eye size and the absence of the iris in heterozygotes. A similar defect is seen in mice that are heterozygous for the Small eye mutation. Mice homozygous for Small eye completely lack eyes and die in utero.

Molecular analysis revealed that the same gene, Pax6, was affected in both the Aniridia and the Small eye syndromes. Pax6 belongs to a paired box/homeodomain family of transcriptional regulators (Fig. 2B). As expected, the Pax6 protein is abundantly expressed in the eye from the earliest stages until the end of eye morphogenesis: initially, in the optic sulcus, and subsequently in the eye vesicle, lens, retina, and finally in the cornea (53,58,59). In Drosophila, the genes eyeless (ey) and twin of eyeless (toy) encode proteins that are homologs of Pax6 (the eyeless gene has undergone duplication during insect evolution, placing eyeless under a direct control of toy (see 60 for details)). Both ey and toy are expressed at high levels in the cells that will form a photoreceptor field of the Drosophila eye, as well as in some other regions of the developing nervous system. Weak mutations in eyeless lead to the reduction or complete loss of compound eyes, whereas strong ones are lethal when homozygous (35,36)—phenotypes mimicking the defects observed in mice. Even more striking was the observation that targeted expression of the Drosophila eyeless or mouse Pax6 genes in various fly tissues led to the formation of ectopic eyes on wings, legs, and antennae (36,60). Recently, misexpression of Pax6 has been shown to cause ectopic eye formation in vertebrates (61). These results demonstrate that Pax6/ eyeless genes are not only required but are sufficient to promote eye development, and therefore have been called master control genes for eye morphogenesis (Fig. 2B).

A traditional view maintained by generations of morphologists, based on the drastic differences observed in eye development and structure in mammals, insects, and mollusks, holds that the eye organ evolved independently in different phyla (6). And indeed this is partly true, as the organization of the organ has diverged extensively in different animal lineages. However, the current evidence indicates that a variety of modern animals specify fields of photoreceptor cells using the same Pax6 controls that triggered the development of the ancestral “eye.” Recently, Pax6 homologs have been also identified in other triploblastic animals (e.g., flatworms, nematodes), and even in Cnidarians (see 62 and references therein). Deep conservation in the visual system is further supported by the fact that all animals use opsins as photoreceptor proteins (63).

As was mentioned for tinman/NKX2-5, patterning genes do not work in isolation, and additional genetic circuitry beyond Pax6 appears to be conserved in different animals. In the fly, Ey activates the expression of the genes for the nuclear proteins Sine oculis (So), Eyes absent (Eya), and Dachsund (Dac), all of which are also essential for eye development. Vertebrate homologs of these proteins have been identified (several Six, Eya, and Dach genes, respectively). Remarkably, their expression patterns, activation by Pax6, molecular interactions, and their role in eye and retinal development have also been conserved, further supporting the existence of a common pathway initiating the development of the visual system. Dach maps to human chromosome 13q21.3–22 and is a candidate gene for postaxial polydactyly type A2 (PAPA2), consistent with its additional expression in the limb primordia in both mice and flies (see 64 and references therein).

Limitations of space prevent us from describing other apparent examples of genetic conservation of animal patterning systems, such as a common mechanism for dorsal/ventral (D/V) patterning involving TGF-β family members Dpp/BMP-4 and their interacting ligands Sog/Chordin (65,66); recruitment of the achaete-scute genes for the establishment of neuronal precursor cells (67); expression of the Distal-less (Dlx) genes in appendage primordia of many metazoans (19); periodic expression of engrailed-related genes, suggesting that the bilateral ancestor of vertebrates and insects might have used a common genetic system to control metamORIZATION (68); conservation of genetic determinants for the anterior (orthodenticle/Otx and empty spiracles/Emx) and posterior (caudal/Cdx) ends of the body (69–72); deployment of the FGF pathway at multiple stages of tracheal and lung branching (73); and others. The existence of common genetic pathways between distantly related organisms suggests that the Urbilat-erian (a common ancestor of all bilaterally symmetrical animals) was a sophisticated creature, with many architectural and organ-specifying genetic systems already in place (65,74). Figure 3 shows a proposed diagram of that ancestral worm-like creature.
Fascinating Questions Concerning the Function of Hox Genes in Humans

In every organism, architectural patterning genes are part of a complex developmental program encoded in that animal’s genome. They have to be expressed in the right place at the right time, and they have to exert specific and precise control over their downstream target genes. Disrupting key interactions at any of these levels can lead to abnormal developmental decisions and ultimately result in mutant phenotypes. The remainder of this paper is devoted to analysis of several fascinating unsolved problems that reside at different levels in the Hox regulatory hierarchy, with an emphasis on implications for human pathology.

What are the mechanisms responsible for the establishment and maintenance of HOX gene expression in humans?

As mentioned before, persistent expression of Hox proteins is required to maintain the identity of cells along the A/P axis. From the studies in Drosophila, it has been known for some time that generation of stable Hox expression domains is a two-step process. The initiation phase is controlled by the products of the coordinate, gap and pair-rule genes that establish initial boundaries of Hox expression. In mammals, little is known about the upstream mechanisms for initiating Hox expression patterns. A few documented examples include the requirement of a zinc-finger transcription factor Krox20 for the activation of Hoxb-2 in the hindbrain of developing mice (75), involvement of the Maf/fb-zip protein Kreisler in Hoxb-3 activation (76), and the role of retinoic acid receptors (RAR proteins) in controlling the boundaries of expression of multiple Hox genes (77). Homologs of such Hox regulators in Drosophila are apparently not directly involved in Hox gene activation or repression.

Recent experiments have provided more evidence for conservation at the next, or maintenance, phase of Hox expression. In both flies and mice the initial zones of Hox expression are stabilized and maintained by a direct action of the proteins from the Trithorax and Polycomb groups (TrxG and PcG, respectively). Extensive characterization of PcG and TrxG functions in Drosophila have shown that PcG proteins are transcriptional repressors of a variety of genes, including Hox genes (Fig. 4). Conversely, TrxG proteins are transcriptional activators on Hox genes, as well as many other loci (reviewed in 78–

![FIG. 4. The role of Polycomb (Pc) and Trithorax (Trx) group genes in the maintenance of Hox expression patterns.](image-url)
types resembling mutations in the Hox genes themselves (87,88). The biochemical functions of TrxG and PcG members are achieved in multimeric protein complexes (Fig. 4B). In some cases, these complexes are known to maintain either an activated or repressed state of gene expression by regulating chromatin structure (89–91). In mammals, TrxG and PcG members are involved in developmental pathways such as hematopoiesis and cell proliferation in addition to their role in Hox gene transcription on the A/P body axis (84,92,93). For example, chromosomal rearrangements involving the human HRX gene (the homolog of Drosophila trithorax), known also as MLL or ALL1, often result in leukemias, which may be in part due to the deregulation of Hox genes in blood cells (reviewed in 94,95). The mutant defects that result from mutations in the Trx and Pc group genes have made them the subject of intensive clinical and genetic research.

In addition to TrxG and PcG control, the maintenance of Hox gene expression is facilitated by multiple auto- and cross-regulatory interactions. Thus, Drosophila proteins Lab and Dfd maintain their own transcription through autoactivation enhancers (96–99), and similar autoactivation control has been found in the murine homologs of these genes, Hoxb-1 and Hoxb-4 (13,100). Cross-regulatory relationships play an equally important role in determination of Hox transcription patterns (13).

What is the basis for the specificity of Hox function?

Molecular geneticists have been puzzled by an apparent paradox. On one hand, different Hox functions result in unique morphologies, which suggests a great deal of specificity in Hox action. On the other hand, Hox protein monomers bind very similar DNA sequences in vitro, and even when a slight preference in such binding is observed, the resulting sequence recognition variations are not sufficient to provide the necessary patterns of expression when tested in vivo (101–103). To reconcile these apparently contradictory observations, a hypothesis was put forward that other proteins, called modulators or cofactors, would assist Hox proteins in assembling specific activation or repression complexes on the regulatory elements of Hox target genes (104,105).

In recent years, ample experimental support has been provided for the cofactor theory. One of the best-studied examples is Drosophila Extradenticle (Exd), a protein with a highly divergent homeodomain (106,107). Interestingly, embryos lacking all exd function show loss of most segmental differentiation, without any apparent changes in the expression patterns of Hox genes. This suggests that the Exd protein works in parallel to or downstream of Hox proteins, and might directly contribute to their function (Fig. 5A). Indeed, Exd was found to form stable heterodimeric complexes on DNA with a variety of Hox proteins, and recently a crystal structure of such a complex was determined (108–110). Moreover, Hox-Exd heterodimer binding sites have been found in the regulatory regions of some known Hox targets, and mutations in the target sequences that abolish Hox-Exd binding often result in a loss of reporter expression in vivo. Exd is highly homologous to mammalian Pbx1, originally identified as the chromosome 1 partner of the t(1;19) translocation in human preB-cell ALL (111,112). Heterodimeric Hox-Pbx1 complexes are very similar in structural and functional properties to the Drosophila Hox-Exd complexes, suggesting that Hox-Pbx interactions are evolutionarily ancient (113). Oncogenic effects of Pbx1 mutations have been attributed to alterations in the function of mammalian Hox proteins (112).

Cooperative binding of a Hox protein with Exd enhances both the strength of interaction and the specificity of interaction of the heterodimer with some DNA sites (105,114,115). Recent evidence suggests that Hox-Exd heterodimer binding is important, but not sufficient to explain the specificity of Hox function. First of all, other cofactors are involved, such as the divergent homeodomain protein Homothorax (Hth) that is related to mammalian Meis1 and Prep1 proteins (116–121). Hth controls nuclear localization of Exd, and also participates in formation of heterotrimeric Hox-Exd-Hth complexes on DNA (122,123). Also, recent analysis of several natural Hox response elements has shown that real enhancers are complex and contain multiple Hox and cofactor binding sites, all of which contribute to the overall output from that regulatory element (99,109,124–127). In addition to determining Hox binding specificity, cofactors can play a role in uncovering a covert activation potential of the Hox protein already bound to DNA (Fig. 5A) (109,125). Leukemogenic phenotypes of mutations in Pbx1, Meis1, and other cofactors suggest that precise control of Hox activity is required for making correct regulatory decisions in differentiating cells, such as those involved in hematopoiesis (111,128).
little doubt that the story of Hox cofactors and modulators will not be limited to interactions with Exd- and Hth-type proteins, and evidence for additional factors is gradually accumulating, primarily from genetic screens in the fly (129–132).

Hox targets: Dozens or thousands?

The functions of Hox proteins and their cofactors converge on Hox target genes. It has been recognized for some time that the morphological features that constitute the "identity" of a group of cells must be determined by a variety of proteins responsible for cell shape, movement, and differentiation. It is these "realizator" genes that are thought to be downstream of Hox hierarchical pathways (133). A variety of approaches, including testing candidate genes for Hox regulation, subtractive hybridization, and chromatin immunoprecipitation, have been employed in the search for Hox targets (reviewed in 134,135). The number of Hox targets has recently been proposed to be exceptionally numerous (136). However, only a limited number of candidate downstream genes have been determined to be directly under Hox control (137).

Recent experiments have provided clues for our understanding of the molecular logic of Hox target gene selection. It seems likely that Hox proteins can independently activate or repress many genes that function at different levels of the hierarchy leading from a Hox protein to a unique morphology (Fig. 5B). Thus, Hox proteins can directly control not only transcription factors that are still high in the regulatory pathway, but also genes for signaling proteins and other "realizator" functions (138). Moreover, many genes can apparently serve as direct targets for several Hox proteins (136,139). In order to understand how different Hox genes instruct one homologous structure to be different from another, we will have to know both the spectrum of their target genes and the architecture of their regulatory pathways.

Concluding Remarks

These are exciting times for developmental molecular genetics, particularly in the new genes and
insights that apply to human development. New discoveries have changed century-old paradigms in embryology and evolution and have allowed human medical genetics to become more sophisticated in its diagnostic and predictive power. In the race for understanding the molecular basis of disease, simple model organisms such as Drosophila, C. elegans, and others will continue to be an indispensable tool for providing answers relevant for human biology. At the functional genomic level, the research on these organisms will provide rich biological annotations when the human genomic sequence is finished, since fundamental body patterning mechanisms and the functions of key regulatory molecules have persisted through millions of years of evolutionary change. The recent technological breakthrough in gene expression profiling using DNA microarrays (140), combined with knowledge obtained from the C. elegans, Drosophila, and human genome sequences, will provide incredibly rapid advances in our understanding of developmental patterning genes under normal and pathological conditions.

ACKNOWLEDGMENTS

The authors thank Nadine McGinnis, Xuelin Li, and Ingrid Endl for critical reading and helpful comments on the manuscript. The human embryo diagram in Fig. 1 is derived from a picture that can be found on the "Visible Embryo" web site (http://www.visembryo.com). A.V. is an HHMI predoctoral fellow. This work was supported in part by Grant NICHD 28315 (to W.M.).

REFERENCES

CONSERVED DEVELOPMENTAL GENES

111. Van Dijk MA, Voorhoeve PM, Murre C. Pbx1 is converted into a transcriptional activator upon acquiring the N-terminal region of E2A in pre-B cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 90:6061–6065, 1993.

